NOT NECESSARILY would a triangle be equilateral if one of its angles is 60 degrees. To be an equilateral triangle (a triangle in which all 3 sides have the same length), all 3 angles of the triangle would have to be 60°-angles; however, the triangle could be a 30°-60°-90° right triangle in which the side opposite the 30 degree angle is one-half as long as the hypotenuse, and the length of the side opposite the 60 degree angle is √3/2 as long as the hypotenuse. Another of possibly many examples would be a triangle with angles of 60°, 40°, and 80° which has opposite sides of lengths 2, 1.4845 (rounded to 4 decimal places), and 2.2743 (rounded to 4 decimal places), respectively, the last two of which were determined by using the Law of Sines: "In any triangle ABC, having sides of length a, b, and c, the following relationships are true: a/sin A = b/sin B = c/sin C."¹
Answer:
P(≥ 7 males) = 0.0548
Step-by-step explanation:
This is a binomial probability distribution problem.
We are told that Before 1918;
P(male) = 40% = 0.4
P(female) = 60% = 0.6
n = 10
Thus;probability that 7 or more were male is;
P(≥ 7 males) = P(7) + P(8) + P(9) + P(10)
Now, binomial probability formula is;
P(x) = [n!/((n - x)! × x!)] × p^(x) × q^(n - x)
Now, p = 0.4 and q = 0.6.
Also, n = 10
Thus;
P(7) = [10!/((10 - 7)! × 7!)] × 0.4^(7) × 0.6^(10 - 7)
P(7) = 0.0425
P(8) = [10!/((10 - 8)! × 8!)] × 0.4^(8) × 0.6^(10 - 8)
P(8) = 0.0106
P(9) = [10!/((10 - 9)! × 9!)] × 0.4^(9) × 0.6^(10 - 9)
P(9) = 0.0016
P(10) = [10!/((10 - 10)! × 10!)] × 0.4^(10) × 0.6^(10 - 10)
P(10) = 0.0001
Thus;
P(≥ 7 males) = 0.0425 + 0.0106 + 0.0016 + 0.0001 = 0.0548
Answer:
The maximum value of the confidence interval for this set of survey results is 51.73%.
Step-by-step explanation:
A confidence interval has two bounds, a lower bound and an upper bound.
These bounds depend on the sample proportion and on the margin of error.
The lower bound is the sample proportion subtracted by the margin of error.
The upper bound is the margin of error added to the sample proportion.
In this question:
Sample proportion: 46.1%
Margin of error: 5.63%.
Maximum value is the upper bound:
46.1+5.63 = 51.73
The maximum value of the confidence interval for this set of survey results is 51.73%.
Answer:
The total area is 3016 square inches, approximately