Answer:
a) k = 891.82 N/m
b) e = 0.0143 m = 1.43 cm
c) W = 5.02 J
Explanation:
Step 1: Data given
Mass = 2.60 kg
the spring stretches 2.86 cm = 0.0286
Step 2: What is the force constant of the spring?
Force constant, k = force applied / extension produced
k = (2.60kg * 9.81N/kg) / 0.0326 m
k = 891.82 N/m
b) If the 2.60-kg object is removed, how far will the spring stretch if a 1.30-kg block is hung on it
Extension = F/k = (1.30 kg * 9.81) / 891.82 = 0.0143 m = 1.43 cm
Half the mass means half the extension
c) How much work must an external agent do to stretch the same spring 7.50 cm from its unstretched position?
W = average force used * distance
W = 1/2 * k*e * e = 1/2 k*e²
W = 1/2 * 891.82 * (0.075)² = W = 5.02 J
It is 7.4x(10 to the power of 7)
Answer:
volume = 8 cm^3 + 32 g / 0.8 g/ cm^3 = 48 cm^3
mass = 32 + 8 = 40 g
40 g / 48 cm^3
Explanation:
Answer:
momentum=mass×velocity
momentum =400kg×20m/s=8000kg.m/s
Answer:
The angular speed of the system increases.
The moment of inertia of the system decreases.
Explanation:
As we know that the girl is going towards the center of the circle so here the moment of inertia of the girl is given as

here we know that
r = position of the girl from the center of the disc
now we know that the girl is moving towards the center so its distance will continuously decreasing
So the moment of inertia of the girl will decrease
Now we know that that with respect to the center of the disc there is no torque on the disc + girl system
So here we can use angular momentum conservation
So we have

since moment of inertia is decreasing for the system
so angular speed will increase