What is the surface area of the solid?
2 answers:
Answer:
A. 520 square inches is your surface area of the rectangular prism
You might be interested in
The slope-intercept form:
The formula of a slope:
We have the points (-4, 47) and (2, -16). Substitute:
Therefore we have:
Put the coordinates of the point (2, -16) to the equation:
Answer:
Answer:
x=49
Step-by-step explanation:
Answer:
2, _/21
Step-by-step explanation:
Answer:
<h3>Question 1</h3>
- sec²θ + cosec²θ =
- 1/cos²θ + 1/sin²θ =
- (sin²θ + cos²θ)/(sin²θcos²θ) =
- 1 / (sin²θcos²θ) =
- [(sin²θ + cos²θ)/sinθcosθ]² =
- (sinθ/cosθ + cosθ/sinθ)² =
- (tanθ + cotθ)²
<h3>Question 2</h3>
- (1 - tan²θ) / (1 + tan²θ) =
- (1 - sin²θ/cos²θ) / (1 + sin²θ/cos²θ) =
- (cos²θ - sin²θ) / (cos²θ + sin²θ) =
- (cosθ + sinθ)(cosθ - sinθ) / 1 =
- (cosθ + sinθ)(cosθ - sinθ)
<h3>Question 3</h3>
- sinθ/ (1 - cotθ) + cosθ / (1 - tanθ) =
- sinθ / (1 - cosθ/sinθ) + cosθ / (1 - sinθ/cosθ) =
- sinθ/ [(sinθ - cosθ) / sinθ] + cosθ / [(cosθ - sinθ)/cosθ] =
- sin²θ/ (sinθ - cosθ) + cos²θ/(cosθ - sinθ) =
- sin²θ/ (sinθ - cosθ) - cos²θ/(sinθ - cosθ) =
- (sin²θ - cos²θ) / (sinθ - cosθ) =
- (sinθ + cosθ)(sinθ - cosθ) / (sinθ - cosθ) =
- sinθ + cosθ