Answer:
The coordinates of the point on the line segment between A (3 , -5) and B (13 , -15) given that the point is 4/5 of the way from A to B would be: (11 , -13)
Step-by-step explanation:
As the line segment has the points:
Let (x, y) be the point located on the line segment which is 4/5 of the way from A to B.
Using the formula
![x=\frac{x_{1}m_{2}+x_{2}m_{1}}{m_{1}+m_{2}}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bx_%7B1%7Dm_%7B2%7D%2Bx_%7B2%7Dm_%7B1%7D%7D%7Bm_%7B1%7D%2Bm_%7B2%7D%7D)
![y=\frac{y_{1}m_{2}+y_{2}m_{1}}{m_{1}+m_{2}}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7By_%7B1%7Dm_%7B2%7D%2By_%7B2%7Dm_%7B1%7D%7D%7Bm_%7B1%7D%2Bm_%7B2%7D%7D)
Here, the point (x , y) divides the line segment having end points (x₁, y₁) and (x₂, y₂) in the ratio m₁ : m₂ from the point (x₁, y₁).
As (x, y) be the point located on the line segment which is 4/5 of the way from A to B, meaning the distance from
to
is
units, and the
distance from
to B is 1 unit, as
.
Thus
m : n = 4 : 1
so
<u>Finding x-coordinate:</u>
![x=\frac{x_{1}m_{2}+x_{2}m_{1}}{m_{1}+m_{2}}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bx_%7B1%7Dm_%7B2%7D%2Bx_%7B2%7Dm_%7B1%7D%7D%7Bm_%7B1%7D%2Bm_%7B2%7D%7D)
![x=\frac{\left(3\right)\left(1\right)+\left(13\right)\left(4\right)}{4+1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Cleft%283%5Cright%29%5Cleft%281%5Cright%29%2B%5Cleft%2813%5Cright%29%5Cleft%284%5Cright%29%7D%7B4%2B1%7D)
![\mathrm{Remove\:parentheses}:\quad \left(a\right)=a](https://tex.z-dn.net/?f=%5Cmathrm%7BRemove%5C%3Aparentheses%7D%3A%5Cquad%20%5Cleft%28a%5Cright%29%3Da)
![x=\frac{3\cdot \:1+13\cdot \:4}{4+1}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B3%5Ccdot%20%5C%3A1%2B13%5Ccdot%20%5C%3A4%7D%7B4%2B1%7D)
∵ ![3\cdot \:1+13\cdot \:4=55](https://tex.z-dn.net/?f=3%5Ccdot%20%5C%3A1%2B13%5Ccdot%20%5C%3A4%3D55)
![x=\frac{55}{5}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B55%7D%7B5%7D)
![\mathrm{Divide\:the\:numbers:}\:\frac{55}{5}=11](https://tex.z-dn.net/?f=%5Cmathrm%7BDivide%5C%3Athe%5C%3Anumbers%3A%7D%5C%3A%5Cfrac%7B55%7D%7B5%7D%3D11)
![x=11](https://tex.z-dn.net/?f=x%3D11)
<u></u>
<u>Finding y-coordinate:</u>
![y=\frac{y_{1}m_{2}+y_{2}m_{1}}{m_{1}+m_{2}}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7By_%7B1%7Dm_%7B2%7D%2By_%7B2%7Dm_%7B1%7D%7D%7Bm_%7B1%7D%2Bm_%7B2%7D%7D)
![y=\frac{\left(-5\right)\left(1\right)+\left(-15\right)\left(4\right)}{4+1}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B%5Cleft%28-5%5Cright%29%5Cleft%281%5Cright%29%2B%5Cleft%28-15%5Cright%29%5Cleft%284%5Cright%29%7D%7B4%2B1%7D)
![\mathrm{Remove\:parentheses}:\quad \left(a\right)=a](https://tex.z-dn.net/?f=%5Cmathrm%7BRemove%5C%3Aparentheses%7D%3A%5Cquad%20%5Cleft%28a%5Cright%29%3Da)
![y=\frac{-5\cdot \:\:1-15\cdot \:\:4}{4+1}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B-5%5Ccdot%20%5C%3A%5C%3A1-15%5Ccdot%20%5C%3A%5C%3A4%7D%7B4%2B1%7D)
∵ ![-5\cdot \:1-15\cdot \:4=-65](https://tex.z-dn.net/?f=-5%5Ccdot%20%5C%3A1-15%5Ccdot%20%5C%3A4%3D-65)
![=\frac{-65}{5}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B-65%7D%7B5%7D)
![\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Athe%5C%3Afraction%5C%3Arule%7D%3A%5Cquad%20%5Cfrac%7B-a%7D%7Bb%7D%3D-%5Cfrac%7Ba%7D%7Bb%7D)
![y=-\frac{65}{5}](https://tex.z-dn.net/?f=y%3D-%5Cfrac%7B65%7D%7B5%7D)
![y=-13](https://tex.z-dn.net/?f=y%3D-13)
so
Therefore, the coordinates of the point on the line segment between A (3 , -5) and B (13 , -15) given that the point is 4/5 of the way from A to B would be: (11 , -13)