Answer:
The final price of the textbook rounded to the nearest dollar is $167
Step-by-step explanation:
To solve this problem, we need to find out what 13.5% of $147 equals.
13.5% = 0.135
0.135 x $147 = $19.845
$147 + 19.845 = 166.845
Round to the nearest dollar to get $167
Answer:
The area of the triangle is basically half the area of the square, so we only need to find the area of the square and divide it by 2:
S = (15 · 15)/2 = 112.5 (square units)
Answer:
BC, DB, CD
Step-by-step explanation:
The side opposite the largest angle must be the largest side and the side opposite the smallest angle must be the shortest. 96 degrees is opposite CD and 30 degrees is opposite BC.
Check the picture below.
bear in mind that, the "bases" are the two parallel sides, and the height is the distance between them.
![\bf \textit{area of this trapezoid}\\\\ A=\cfrac{AB(BC+AD)}{2}\\\\ -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -1}}\quad ,&{{ 5}})\quad % (c,d B&({{ 3}}\quad ,&{{ 2}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ AB=\sqrt{[3-(-1)]^2+[2-5]^2}\implies AB=\sqrt{(3+1)^2+(2-5)^2} \\\\\\ AB=\sqrt{16+9}\implies AB=\sqrt{25}\implies \boxed{AB=5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20this%20trapezoid%7D%5C%5C%5C%5C%0AA%3D%5Ccfrac%7BAB%28BC%2BAD%29%7D%7B2%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AA%26%28%7B%7B%20-1%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%0AB%26%28%7B%7B%203%7D%7D%5Cquad%20%2C%26%7B%7B%202%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%5B3-%28-1%29%5D%5E2%2B%5B2-5%5D%5E2%7D%5Cimplies%20AB%3D%5Csqrt%7B%283%2B1%29%5E2%2B%282-5%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B16%2B9%7D%5Cimplies%20AB%3D%5Csqrt%7B25%7D%5Cimplies%20%5Cboxed%7BAB%3D5%7D)

![\bf -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -1}}\quad ,&{{ 5}})\quad % (c,d D&({{ -13}}\quad ,&{{ -11}}) \end{array} \\\\\\ AD=\sqrt{[-13-(-1)]^2+[-11-5]^2} \\\\\\ AD=\sqrt{(-13+1)^2+(-16)^2}\implies AD=\sqrt{144+256} \\\\\\ AD=\sqrt{400}\implies \boxed{AD=\sqrt{20}}](https://tex.z-dn.net/?f=%5Cbf%20-------------------------------%5C%5C%5C%5C%0A%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AA%26%28%7B%7B%20-1%7D%7D%5Cquad%20%2C%26%7B%7B%205%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%0AD%26%28%7B%7B%20-13%7D%7D%5Cquad%20%2C%26%7B%7B%20-11%7D%7D%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B%5B-13-%28-1%29%5D%5E2%2B%5B-11-5%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B%28-13%2B1%29%5E2%2B%28-16%29%5E2%7D%5Cimplies%20AD%3D%5Csqrt%7B144%2B256%7D%0A%5C%5C%5C%5C%5C%5C%0AAD%3D%5Csqrt%7B400%7D%5Cimplies%20%5Cboxed%7BAD%3D%5Csqrt%7B20%7D%7D)
so, the area for this trapezoid is then
It is convenient to let a spreadsheet or graphing calculator do the math for this. Functions can be defined for cost and profit, and evaluated at each of the volumes of interest.
a1) For 200 cars, the Outside location yields the greatest profit
a2) For 300 cars, the City location yields the greatest profit
b) The sites yield the same profit for a volume of 278 cars.