Answer:
Ok
Step-by-step explanation:
Answer:
Rolling case achieves greater height than sliding case
Step-by-step explanation:
For sliding ball:
- When balls slides up the ramp the kinetic energy is converted to gravitational potential energy.
- We have frictionless ramp, hence no loss due to friction.So the entire kinetic energy is converted into potential energy.
- The ball slides it only has translational kinetic energy as follows:
ΔK.E = ΔP.E
0.5*m*v^2 = m*g*h
h = 0.5v^2 / g
For rolling ball:
- Its the same as the previous case but only difference is that there are two forms of kinetic energy translational and rotational. Thus the energy balance is:
ΔK.E = ΔP.E
0.5*m*v^2 + 0.5*I*w^2 = m*g*h
- Where I: moment of inertia of spherical ball = 2/5 *m*r^2
w: Angular speed = v / r
0.5*m*v^2 + 0.2*m*v^2 = m*g*h
0.7v^2 = g*h
h = 0.7v^2 / g
- From both results we see that 0.7v^2/g for rolling case is greater than 0.5v^2/g sliding case.
I think it’s between the first and third one
Answer:
x < -5
Step-by-step explanation:
- 2x - 7 > x+ 8
Add 2x to each side
- 2x+2x - 7 > x+2x+ 8
-7 > 3x+8
Subtract 8 from each side
-7-8 > 3x+8-8
-15 > 3x
Divide by 3
-15/3 > 3x/3
-5 >x
x < -5
Answer:
44 in
Step-by-step explanation:
The circumference of the tire will be the same as the distance the unicycle moves in one complete revolution.
Find the circumference with the formula C =
d, where d is the diameter
Plug in the values:
C =
(14)
C = approx. 44 in