Answer:
1,2
Explanation:
During mitosis, a eukaryotic cell undergoes a carefully coordinated nuclear division that results in the formation of two genetically identical daughter cells. ... Then, at a critical point during interphase (called the S phase), the cell duplicates its chromosomes and ensures its systems are ready for cell division.
Answer:
This question lacks options, options are:
A) ATP
B) NADP
C) Pryuvate
D) glucose
E) acetyl-CoA.
The correct answer is C) Pyruvate.
Explanation:
Pyruvate is a very important compound for the cell since it is a key substrate for energy production and glucose synthesis (neo-glycogenesis), that is, pyruvate is the end product of glucose breakdown in glycolysis. Before entering the mitochondria, it can be converted to lactate, through an anaerobic reaction (in the absence or under oxygen supply) of low performance in energy production, when the main pathway is interfered with. It can also be converted to the amino acid alanine. Within the mitochondria, it can be transformed, by pyruvate dehydrogenase (PDH), into acetyl-coenzyme A (acetyl-CoA), the entry point (substrate) of the Krebs cycle. In addition, by means of pyruvate carboxylase, it can be transformed into oxalacetate, which constitutes the first step in neoglycogenesis.
I would rather suggest.....4th one as researcher mad hybrid that is flood resistance by selective breeding !!!
Answer:
i think it is the 3rd one