You should do 7-3=4 then do what’s u have to do with the 7

- Given - <u>an </u><u>equation</u><u> </u><u>in </u><u>a </u><u>standard</u><u> </u><u>form</u>
- To do - <u>simplify</u><u> </u><u>the </u><u>equation</u><u> </u><u>so </u><u>as </u><u>to </u><u>obtain </u><u>an </u><u>easier </u><u>one</u>
<u>Since </u><u>the </u><u>equation</u><u> </u><u>provided </u><u>isn't</u><u> </u><u>i</u><u>n</u><u> </u><u>it's</u><u> </u><u>general</u><u> </u><u>form </u><u>,</u><u> </u><u>let's</u><u> </u><u>first </u><u>convert </u><u>it </u><u>~</u>
<u>General</u><u> </u><u>form </u><u>of </u><u>a </u><u>Linear</u><u> equation</u><u> </u><u>-</u>

<u>T</u><u>he </u><u>equation</u><u> </u><u>after </u><u>getting</u><u> </u><u>converted</u><u> </u><u>will </u><u>be </u><u>as </u><u>follows</u><u> </u><u>~</u>

hope helpful ~
Answer:84.8
Step-by-step explanation:
We know that in 2020 the population of deer will be 900,000 based on the given numbers. In another 5 years the population will be over 1 million (1,350,000) in order to calculate when it will reach 1 million we need to see how much growth is gained per year. I believe to obtain that information we will need to divide 450,000 by 5 that equals 90,000 a year. So if I’m 2020 the population of deer will be 900,000 than add 90,000 until you reach your 1 million marker. In this case 2021 would be 990,000 thousand so 2022 would be 1,080,000. So your answer should be year 2022. Hope that helps.