Answer:
The mass of 10 cm³of a 0.4 g/dm³ solution of sodium carbonate is 0.004 grams
Explanation:
The question is with regards to density calculations
The density of the given sodium carbonate solution, ρ = 0.4 g/dm³
The volume of the given solution of sodium carbonate, V = 10 cm³ = 0.01 dm³


Therefore, we have;

The mass, "m", of the sodium carbonate in = ρ×V = 0.4 g/dm³ × 0.01 dm³ = 0.004 g
The mass of 10 cm³ (10 cm³ = 0.01 dm³) of a 0.4 g/dm³ solution of sodium carbonate, m = 0.004 g.
The correct answer is A. Can I get the Brainliest?
Hello!
datos:
Molarity = 
ps: The ionization constant of the nitric acid is strong (100% ionized in water) or completely dissociates in water, so the pH will be:
![pH = - log\:[H_3O^+]](https://tex.z-dn.net/?f=%20pH%20%3D%20-%20log%5C%3A%5BH_3O%5E%2B%5D%20)
![pH = - log\:[2*10^{-4}]](https://tex.z-dn.net/?f=%20pH%20%3D%20-%20log%5C%3A%5B2%2A10%5E%7B-4%7D%5D%20)



Note:. The pH <7, then we have an acidic solution.
I Hope this helps, greetings ... DexteR!
Answer:
1.31x10⁻³ moles of H₂
Explanation:
This is the equation:
Mg(s) + 2H₂O (g) → Mg(OH)₂ (aq) + H₂(g)
Ratio is 1:1, so 1 mol of Mg is needed to produce 1 mol of H₂
Mass / Molar mass = Mol
0.032 g / 24.3 g/m = 1.31x10⁻³ moles
1.31x10⁻³ moles of H₂(g)
yo no ablo espanol pero si ablo English