Answer:
4033
Step-by-step explanation:
An easy way to solve this problem is to notice the numerator, 2017^4-2016^4 resembles the special product a^2 - b^2. In this case, 2017^4 is a^2 and 2016^4 is b^2. We can set up equations to solve for a and b:
a^2 = 2017^4
a = 2017^2
b^2 = 2016^4
b = 2016^2
Now, the special product a^2 - b^2 factors to (a + b)(a - b), so we can substitute that for the numerator:
<h3>

</h3>
We can notice that both the numerator and denominator contain 2017^2 + 2016^2, so we can divide by
which is just one, and will simplify the fraction to just:
2017^2 - 2016^2
This again is just the special product a^2 - b^2, but in this case a is 2017 and b is 2016. Using this we can factor it:
(2017 + 2016)(2017 - 2016)
And, without using a calculator, this is easy to simplify:
(4033)(1)
4033
Answer:
49b² - 36
Step-by-step explanation:
Find the factors of 49 & 36:
49 = 1, 7, 49
36 = 1, 2, 6, 18, 36
As you can tell, there are no common factors (1 does not count), therefore, the expression given is already in most factored form.
49b² - 36 is your answer.
~
Answer:
2 and 13/60
Step-by-step explanation:
First, we must create a common denominator in the fractions. For the given denominators, it would be 60, so 3/4 would be 45/60 and 8/15 would be 32/60. From here, we can just subtract and get 2 and 13/60.
Hope this helps!