Answer:

Step-by-step explanation:
- If f(x) is in th form of f(x)=g(x)-h(x) then f'(x)=g'(x) - h'(x)
- When f(x)=z(g(x)) then f'(x)= z'(g(x))g'(x) (called as chain rule)
<u>using these information</u>:
g(x)=ln2x then g'(x)=
h(x)=In(3x - 1) then h'(x)=![\frac{(3x-1)'}{3x-1} =\frac{3}{3x-1}f'(x)=g'(x) - h'(x) =[tex]\frac{1}{x} - \frac{3}{3x-1} =\frac{-1}{3x^2-x}](https://tex.z-dn.net/?f=%5Cfrac%7B%283x-1%29%27%7D%7B3x-1%7D%20%3D%5Cfrac%7B3%7D%7B3x-1%7D%3C%2Fp%3E%3Cp%3Ef%27%28x%29%3Dg%27%28x%29%20-%20h%27%28x%29%20%3D%5Btex%5D%5Cfrac%7B1%7D%7Bx%7D%20-%20%5Cfrac%7B3%7D%7B3x-1%7D%20%3D%5Cfrac%7B-1%7D%7B3x%5E2-x%7D)
Answer:
3. 28pm
Step-by-step explanation:
11 43
+3 45
15 28
15.28-12
=3.28
Answer:
The nth term of an AP will be 27 -7n.
Step-by-step explanation:
First five terms of the Arthemetic Sequence is given to us , which is 26 , 19 , 12 , 5
Hence here Common Difference can be found by subtracting two consecutive terms . Here which is 19 - 26 = (-7) .
Here first term is 26 .
And the nth term of an AP is given by ,
★ T_n = a + ( n - 1) d
<u>Subst</u><u>ituting</u><u> respective</u><u> values</u><u> </u><u>,</u>
⇒ T_n = a + ( n - 1 )d
⇒ T_n = 26 + (n - 1)(-7)
⇒ T_n = 26 -7n+1
⇒ T_n = 27 - 7n
<h3>
<u>Hence </u><u>the</u><u> </u><u>nth</u><u> </u><u>term</u><u> of</u><u> an</u><u> </u><u>AP</u><u> </u><u>can</u><u> </u><u>be</u><u> </u><u>found </u><u>using </u><u>T_</u><u>n</u><u> </u><u>=</u><u> </u><u>2</u><u>7</u><u> </u><u>-</u><u> </u><u>7</u><u>n</u><u>. </u></h3>
Answer:
-128
Step-by-step explanation:




Hope this helps!
Answer: 2.82
Step-by-step explanation: