Answer:
950
Step-by-step explanation:
854+96=950 I need more characters so ingnor this sentence.
Answer:
About the x axis
![V = 4\pi[ \frac{x^5}{5}] \Big|_0^2 =4\pi *\frac{32}{5}= \frac{128 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%204%5Cpi%5B%20%5Cfrac%7Bx%5E5%7D%7B5%7D%5D%20%5CBig%7C_0%5E2%20%3D4%5Cpi%20%2A%5Cfrac%7B32%7D%7B5%7D%3D%20%5Cfrac%7B128%20%5Cpi%7D%7B5%7D)
About the y axis
![V = \pi [4y -y^2 +\frac{y^3}{12}] \Big|_0^8 =\pi *\frac{32}{3}= \frac{32 \pi}{3}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B4y%20-y%5E2%20%2B%5Cfrac%7By%5E3%7D%7B12%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cpi%20%2A%5Cfrac%7B32%7D%7B3%7D%3D%20%5Cfrac%7B32%20%5Cpi%7D%7B3%7D)
About the line y=8
![V = \pi [64x -\frac{32}{3}x^3 +\frac{4}{5}x^5] \Big|_0^2 =\pi *(128-\frac{256}{3} +\frac{128}{5})= \frac{1024 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B64x%20-%5Cfrac%7B32%7D%7B3%7Dx%5E3%20%2B%5Cfrac%7B4%7D%7B5%7Dx%5E5%5D%20%5CBig%7C_0%5E2%20%3D%5Cpi%20%2A%28128-%5Cfrac%7B256%7D%7B3%7D%20%2B%5Cfrac%7B128%7D%7B5%7D%29%3D%20%5Cfrac%7B1024%20%5Cpi%7D%7B5%7D)
About the line x=2
![V = \frac{\pi}{2} [\frac{y^2}{2}] \Big|_0^8 =\frac{\pi}{4} *(64)= 16\pi](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5B%5Cfrac%7By%5E2%7D%7B2%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2A%2864%29%3D%2016%5Cpi)
Step-by-step explanation:
For this case we have the following functions:

About the x axis
Our zone of interest is on the figure attached, we see that the limit son x are from 0 to 2 and on y from 0 to 8.
We can find the area like this:

And we can find the volume with this formula:


![V = 4\pi [\frac{x^5}{5}] \Big|_0^2 =4\pi *\frac{32}{5}= \frac{128 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%204%5Cpi%20%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%5D%20%5CBig%7C_0%5E2%20%3D4%5Cpi%20%2A%5Cfrac%7B32%7D%7B5%7D%3D%20%5Cfrac%7B128%20%5Cpi%7D%7B5%7D)
About the y axis
For this case we need to find the function in terms of x like this:

but on this case we are just interested on the + part
as we can see on the second figure attached.
We can find the area like this:

And we can find the volume with this formula:


![V = \pi [4y -y^2 +\frac{y^3}{12}] \Big|_0^8 =\pi *\frac{32}{3}= \frac{32 \pi}{3}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B4y%20-y%5E2%20%2B%5Cfrac%7By%5E3%7D%7B12%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cpi%20%2A%5Cfrac%7B32%7D%7B3%7D%3D%20%5Cfrac%7B32%20%5Cpi%7D%7B3%7D)
About the line y=8
The figure 3 attached show the radius. We can find the area like this:

And we can find the volume with this formula:


![V = \pi [64x -\frac{32}{3}x^3 +\frac{4}{5}x^5] \Big|_0^2 =\pi *(128-\frac{256}{3} +\frac{128}{5})= \frac{1024 \pi}{5}](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cpi%20%5B64x%20-%5Cfrac%7B32%7D%7B3%7Dx%5E3%20%2B%5Cfrac%7B4%7D%7B5%7Dx%5E5%5D%20%5CBig%7C_0%5E2%20%3D%5Cpi%20%2A%28128-%5Cfrac%7B256%7D%7B3%7D%20%2B%5Cfrac%7B128%7D%7B5%7D%29%3D%20%5Cfrac%7B1024%20%5Cpi%7D%7B5%7D)
About the line x=2
The figure 4 attached show the radius. We can find the area like this:

And we can find the volume with this formula:


![V = \frac{\pi}{2} [\frac{y^2}{2}] \Big|_0^8 =\frac{\pi}{4} *(64)= 16\pi](https://tex.z-dn.net/?f=%20V%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%20%5B%5Cfrac%7By%5E2%7D%7B2%7D%5D%20%5CBig%7C_0%5E8%20%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%2A%2864%29%3D%2016%5Cpi)
Answer:
3
Step-by-step explanation:
3 is the coefficient of c as it is a constant, whereas a and b are variables, subject to change.
Interesting question
Usually when you look at something like that construction, you think that AB has been bisected by PQ and that the two segments are perpendicular. They are perpendicular but nowhere is that stated. So the answer is C because all the other answers are wrong.
PQ is congruent AB is not correct. As long as the arcs are equal and meet above and below AB there is no proof of congruency. In your mind widen the compass legs so that they are wider than AB and redraw the arcs. You get a larger PQ, but it has all the original properties of PQ except size.
PQ is not congruent to AQ. How would you prove conguency? You'd have to put both lines into triangles that can be proved congruent. It can't be done.
The two lines are not parallel. They are perpendicular. That can be proven. They meet at right angles to each other (also provable).