Pretty difficult problem, but that’s why I’m here.
First we need to identify what we’re looking for, which is t. So now plug 450k into equation and solve for t.
450000 = 250000e^0.013t
Now to solve this, we need to remember this rule: if you take natural log of e you can remove x from exponent. And natural log of e is 1.
Basically ln(e^x) = xln(e) = 1*x
So knowing this first we need to isolate e
450000/250000 = e^0.013t
1.8 = e^0.013t
Now take natural log of both
Ln(1.8) = ln(e^0.013t)
Ln(1.8) = 0.013t*ln(e)
Ln(1.8) = 0.013t * 1
Now solve for t
Ln(1.8)/0.013 = t
T= 45.21435 years
Now just to check our work plug that into original equation which we get:
449999.94 which is basically 500k (just with an error caused by lack of decimals)
So our final solution will be in the 45th year after about 2 and a half months it will reach 450k people.
Answer:
23.6666666667
Step-by-step explanation:
A is the answer for the question
The scatter plot has been attached
Answer:
Options C, D & E are true
Step-by-step explanation:
Option A is wrong because from the scatter plot, only four athletes were faster in the second race than in the first one.
Option B is wrong because only 1 athlete had his second race time differing from the first race time by exactly 2 seconds.
Option C is true because exactly 9 of the times for the first race were at least 16 seconds
Option D is true because there are exactly 3 athletes who had the same time in both races
Option E is true because 8 of the times for the second race were less than 17 seconds
Answer:
Left up x=34
Left down x=87
Right x=17
Step-by-step explanation:
The picture is the working out.