Answer:
The greater the sample size the better is the estimation. A large sample leads to a more accurate result.
Step-by-step explanation:
Consider the table representing the number of heads and tails for all the number of tosses:
Number of tosses n (HEADS) n (TAILS) Ratio
10 3 7 3 : 7
30 14 16 7 : 8
100 60 40 3 : 2
Compute probability of heads for the tosses as follows:

The probability of heads in case of 10 tosses of a coin is -0.20 away from 50/50.

The probability of heads in case of 30 tosses of a coin is -0.033 away from 50/50.

The probability of heads in case of 100 tosses of a coin is 0.10 away from 50/50.
As it can be seen from the above explanation, that as the sample size is increasing the distance between the expected and observed proportion is decreasing.
This happens because, the greater the sample size the better is the estimation. A large sample leads to a more accurate result.
<span>Winning Probablity = 0.2, hence Losing Probability = 0.8
Probablity of winning atmost one time, that means win one and lose four times or lose all the times. So p(W1 or W0) = p (W1) + p(W0)
Winning once W1 is equal to L4, winning zero times is losing 5 times.
p(W1) = p(W1&L4) and this happens 5 times; p(W0) = p(L5);
p (W1) + p(W0) = p(L4) + p(L5)
p(L4) + p(L5) = (5 x 0.2 x 0.8^4) + (0.8^5) => 0.8^4 + 0.8^5
p(W1 or W0) = 0.4096 + 0.32768 = 0.7373</span>
Answer is below..............
Answer:
Mean= 10
Step-by-step explanation:
Mean= Total value of data/Number of datas given
=3+2+26+9/4
=40/4
=10
Mean= 10
In proving that C is the midpoint of AB, we see truly that C has Symmetric property.
<h3>What is the proof about?</h3>
Note that:
AB = 12
AC = 6.
BC = AB - AC
= 12 - 6
=6
So, AC, BC= 6
Since C is in the middle, one can say that C is the midpoint of AB.
Note that the use of segment addition property shows: AC + CB = AB = 12
Since it has Symmetric property, AC = 6 and Subtraction property shows that CB = 6
Therefore, AC = CB and thus In proving that C is the midpoint of AB, we see truly that C has Symmetric property.
See full question below
Given: AB = 12 AC = 6 Prove: C is the midpoint of AB. A line has points A, C, B. Proof: We are given that AB = 12 and AC = 6. Applying the segment addition property, we get AC + CB = AB. Applying the substitution property, we get 6 + CB = 12. The subtraction property can be used to find CB = 6. The symmetric property shows that 6 = AC. Since CB = 6 and 6 = AC, AC = CB by the property. So, AC ≅ CB by the definition of congruent segments. Finally, C is the midpoint of AB because it divides AB into two congruent segments. Answer choices: Congruence Symmetric Reflexive Transitive
Learn more about midpoint from
brainly.com/question/6364992
#SPJ1