Answer:
B
Step-by-step explanation:
Step-by-step explanation:
f(x)=2x²+3x+9
g(x) = - 3x + 10
In order to find (f⋅g)(1) first find (f⋅g)(x)
To find (f⋅g)(x) substitute g(x) into f(x) , that's for every x in f (x) replace it by g (x)
We have
(f⋅g)(x) = 2( - 3x + 10)² + 3(- 3x + 10) + 9
Expand
(f⋅g)(x) = 2( 9x² - 60x + 100) - 9x + 30 + 9
= 18x² - 120x + 200 - 9x + 30 + 9
Group like terms
(f⋅g)(x) = 18x² - 120x - 9x + 200 + 30 + 9
(f⋅g)(x) = 18x² - 129x + 239
To find (f⋅g)(1) substitute 1 into (f⋅g)(x)
That's
(f⋅g)(1) = 18(1)² - 129(1) + 239
= 18 - 129 + 239
We have the final answer as
<h3>(f⋅g)(1) = 128</h3>
Hope this helps you
Answer:
Step-by-step explanation:
When multiplying exponents, remember the first rule: when multiplying similar bases, add powers together. 52% + 56% =? The bases of the equation remain unchanged, while the exponents' values are added together. Adding the exponents is only a quick way to get at the answer. Simply add the exponents to multiply exponential expressions with the same base. Simplify. The product rule applies because the base of both exponents is a. With a common basis, add the exponents.