Answer:
9/10 (one solution)
Step-by-step explanation:
Answer:
we need to prove : for every integer n>1, the number
is a multiple of 5.
1) check divisibility for n=1,
(divisible)
2) Assume that
is divisible by 5, 
3) Induction,



Now, 



Take out the common factor,
(divisible by 5)
add both the sides by f(k)

We have proved that difference between
and
is divisible by 5.
so, our assumption in step 2 is correct.
Since
is divisible by 5, then
must be divisible by 5 since we are taking the sum of 2 terms that are divisible by 5.
Therefore, for every integer n>1, the number
is a multiple of 5.
Answer:
(-5,-2)
(-4,-3)
(-6,-1)
Step-by-step explanation:
-5(x)-2(y)=-7
-4(x)-3(y)=-7
-6(x)-1(y)=-7
Answer:
✔️2 sets of corresponding angles
<D and <S
<R and <L
✔️2 sets of corresponding sides
DR and SL
RM and LT
Step-by-step explanation:
When two polygons are congruent, it implies that they have the same shape and size. Therefore, their corresponding angles and sides are congruent to each other.
When naming congruent polygons, the arrangement of the vertices are kept in a definite order of arrangement.
Therefore, Given that polygon DRMF is congruent to SLTO, the following angles and sides correspond to each other:
<D corresponds to <S
<R corresponds to <L
<M corresponds to <T
<F corresponds to <O
For the sides, we have:
DR corresponds to SL
RM corresponds to LT
MF corresponds to TO
FD corresponds to OS.
We can select any two out of these sets of corresponding angles and sides as our answer. Thus:
✔️2 sets of corresponding angles
<D and <S
<R and <L
✔️2 sets of corresponding sides
DR and SL
RM and LT