Answer:
31.24 kJ
Explanation:
- SiO₂(g) + 3C(s) → SiC(s) + 2CO(g) ΔH° = 624.7 kJ/mol
First we <u>convert 3.00 grams of SiO₂ to moles</u>, using its <em>molar mass</em>:
- 3.00 g SiO₂ ÷ 60.08 g/mol = 0.05 mol
Now we <u>calculate the heat absorbed</u>, using the <em>given ΔH°</em>:
If the complete reaction of 1 mol of SiO₂ absorbs 624.7 kJ, then with 0.05 mol:
- 0.05 mol * 624.7 kJ/mol = 31.24 kJ of heat would be absorbed.
Answer:
The answer is 0.023 moles of phosphorus
Explanation:
The 15-15-15 fertilizer is a fertilizer of great versatility, made with nitrogen, phosphorus and potassium, which makes it one of the fertilizers most used for fertilizer in the sowing plant, thus covering the crop requirements from planting. .
This fertilizer consists of 14.25% phosphorus pentoxide (P2O5). Therefore, we have to remove 14.25% at 10 grams of 15-15-15 fertilizer to calculate the moles of phosphorus. As follows:
Grams of P2O5 = 10 g x 0.1425 = 1.425 g
We calculate the molecular weight of phosphorus. We use the periodic table:
Phosphorus molecular weight = 2 x 30.97 = 61.94 g/mol
Now we calculate the moles of phosphorus in the fertilizer:
Phosphorus moles = 1,425 g/61.94 g/mol = 0.023 moles
To find the mass you divide multiply volume and density..
Density = 1.79 x 10^-4 Volume = 6.3
(1.79 x 10^-4 )(6.3) = <span>1.1 x 10^-3 g
</span>