Answer:
Yes they are found in same period
Answer:
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year
Explanation:
Given that the mass of the carbon 14 at the start = 5 gram
At the end of 5,000 years we will have;

Where
A = The amount of carbon 14 left
A₀ = The starting amount of carbon 14
e = Constant = 2.71828
= The half life

t = The time elapsed = 5000 years
λ = 0.693/
= 0.693/5730 = 0.0001209424
Therefore;
A = 5 × e^(-0.0001209424×5000) = 2.7312 grams
Therefore, the amount of carbon 14 decayed in the 5000 years is the difference in mass between the starting amount and the amount left
The amount of carbon 14 decayed = 5 - 2.7312 = 2.2688 grams
The average yearly rate of change of carbon-14 during the first 5000 years is therefore;
2.2688 grams/(5000 years) = 0.0004538 grams per year
The average yearly rate of change of carbon-14 during the first 5000 years = 0.0004538 grams per year.
We are given with an element Iron, Fe, with a mass of 235.45 g. We are tasked to solve for its corresponding molar mass in mol. We need to find first the molecular weight of Iron, that is
Fe= 55.845 g/mol
With 235.45 g sample, its corresponding mol is
mol Fe= 235.45 g x 1 mol/55.845 = 4.22 mol Fe
Therefore, molar mass of Iron is 4.22 mol
Answer:
Explanation:
The equation of the reaction:
Nitrogen gas N₂ reacts with Hydrogen as H₂ to produce ammonia NH₃;
N₂ + H₂ → NH₃
The balanced equation is ;
N₂ + 3H₂ → 2NH₃
The mole ratio is the ratio of the coefficients of the combining reactants;
1 mole of N₂ combines with 3 mole of H₂;
So;