Answer:
It’s to gain territory
Because they wanted more territory than what they already had.
Answer:
A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic.
Explanation:
The spontaneity of a reaction depends on the Gibbs free energy(ΔG).
- If ΔG < 0, the reaction is spontaneous.
- If ΔG > 0, the reaction is nonspontaneous.
ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T.ΔS
where,
T is the absolute temperature (always positive)
Regarding the exchange of heat:
- If ΔH < 0, the reaction is exothermic.
- If ΔH > 0, the reaction is endothermic.
<em>Which statement is true? </em>
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic. </em>TRUE. If ΔS < 0, the term -T.ΔS > 0. ΔG can be negative only if ΔH is negative.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative if ΔH is negative.
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS < 0, the term -T.ΔS > 0. ΔG cannot be negative if ΔH is positive.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is exothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative even if ΔH is positive, as long as |T.ΔS| > |ΔH|.
Answer:
-200
Explanation:
My sister told me to put dat but dont put dat as your answer
Answer:
43.93 g/mol
Explanation:
The mass of the gas before reaction = 52.1487 g
The mass of the gas after reaction = 52.1098 g
Mass of gas generated = 0.0389 g
Moles of the gas = 
The formula for the calculation of moles is shown below:

Thus,


Molar mass of the gas = 43.93 g/mol