Answer:
Needle and Scale Leaves. This kind of leaves are mostly found in 'evergreen' trees. ...
Lanceolate Leaf. ...
Oblong Leaf. ...
Linear Leaves. ...
Cordate Leaves.
Explanation:
The right answer for the question that is being asked and shown above is that: "(2) the cathode in a voltaic cell and the anode in an electrolytic cell." At the status of electrode does oxidation occur in a voltaic cell and in an electrolytic cell is that the cathode in a voltaic cell and the anode in <span>an electrolytic cell</span>
I don’t, but what are Gizmos?
Answer:
The appropriate option will be Option A (unequal sharing of electrons in a covalent bond).
Explanation:
- A polar bond seems to be a covalent bond amongst two or even more atoms where there is an uneven distribution of the electrons surrounding the connection.
- This induces a small electrical magnetic dipole in the molecules whereby the end becomes generally favorable and another is mildly controversial.
The other choices aren't relevant to the situation presented. The answer above would be appropriate.
Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1