The activation energy Ea can be related to rate constant (k) at temperature (T) through the equation:
ln(k2/k1) = Ea/R[1/T1 - 1/T2]
where :
k1 is the rate constant at temperature T1
k2 is the rate constant at temperature T2
R = gas constant = 8.314 J/K-mol
Given data:
k1 = 0.543 s-1; T1 = 25 C = 25+273 = 298 K
k2 = 6.47 s-1; T = 47 C = 47+273 = 320 K
ln(6.47/0.543) = Ea/8.314 [1/298 - 1/320]
2.478 = 2.774 *10^-5 Ea
Ea = 0.8934*10^5 J = 89.3 kJ
Answer:
This is one of the factors that affects chemical reactions
Temperature:This is because when the temperature is raised energy in form of heat is supplied to the reacting particles and so the rate of reaction is increased.
Well, first of all, the formula for finding potential energy is;
PE=mgh
Where; m is the mass
g is the gravitational force or acceleration due to gravity
h is the height.
Anyway, according to the question, the mass is 1kg, the acceleration due to gravity has a constant value of 10ms² . And the height is 3m. Now you just have to use all these in the formula. So;
mgh= 1 x 10 x 3. That will be 30. And the unit of potential energy is Joule. So the answer is 30 joules. Hope i helped. Have a nice day.
Answer:
Homologous series is defined as a systematic order of structurally similar organic compound containing same functional group in their family and two adjacent members differ in their molecular formula by -CH2 unit.
Characteristics:
1.Various members of homologous series contain same functional group.
2.Various members of homologous series can be represented by common formula.
3. All members of a homologous series have almost similar chemical properties.
4. All members have common method of preparation.
5.Two successive members of homologous series have different chain length or difference in their molecular formula by -CH2 unit.
6.The members of homologous series show different physical properties.