1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
9

What would the degree be

Mathematics
1 answer:
Leya [2.2K]3 years ago
5 0

Answer:

3

Step-by-step explanation:

It is the highest exponent value.

You might be interested in
HELP ASAP (Geometry)
Andrei [34K]

1) Parallel line: y=-2x-3

2) Rectangle

3) Perpendicular line: y = 0.5x + 2.5

4) x-coordinate: 2.7

5) Distance: d=\sqrt{(4-3)^2+(7-1)^2}

6) 3/8

7) Perimeter: 12.4 units

8) Area: 8 square units

9) Two slopes of triangle ABC are opposite reciprocals

10) Perpendicular line: y-5=-4(x-(-1))

Step-by-step explanation:

1)

The equation of a line is in the form

y=mx+q

where m is the slope and q is the y-intercept.

Two lines are parallel to each other if they have same slope m.

The line given in this problem is

y=-2x+7

So its slope is m=-2. Therefore, the only line parallel to this one is the line which have the same slope, which is:

y=-2x-3

Since it also has m=-2

2)

We can verify that this is a rectangle by checking that the two diagonals are congruent. We have:

- First diagonal: d_1 = \sqrt{(-3-(-1))^2+(4-(-2))^2}=\sqrt{(-2)^2+(6)^2}=6.32

- Second diagonal: d_2 = \sqrt{(1-(-5))^2+(0-2)^2}=\sqrt{6^2+(-2)^2}=6.32

The diagonals are congruent, so this is a rectangle.

3)

Given points A (0,1) and B (-2,5), the slope of the line is:

m=\frac{5-1}{-2-0}=-2

The slope of a line perpendicular to AB is equal to the inverse reciprocal of the slope of AB, so:

m'=\frac{1}{2}

And using the slope-intercept for,

y-y_0 = m(x-x_0)

Using the point (x_0,y_0)=(7,1) we find:

y-1=\frac{1}{2}(x-7)

And re-arranging,

y-1 = \frac{1}{2}x-\frac{7}{2}\\y=\frac{1}{2}x-\frac{5}{2}\\y=0.5x-2.5

4)

The endpoints of the segment are X(1,2) and Y(6,7).

We have to divide the sgment into 1/3 and 2/3 parts from X to Y, so for the x-coordinate we get:

x' = x_0 + \frac{1}{3}(x_1 - x_0) = 1+\frac{1}{3}(6-1)=2.7

5)

The distance between two points A(x_A,y_A) and B(x_B,y_B) is given by

d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

In this problem, the two points are

E(3,1)

F(4,7)

So the distance is given by

d=\sqrt{(4-3)^2+(7-1)^2}

6)

We have:

A(3,4)

B(11,3)

Point C divides the segment into two parts with 3:5 ratio.

The distance between the x-coordinates of A and B is 8 units: this means that the x-coordinate of C falls 3 units to the right of the x-coordinate of A and 5 units to the left of the x-coordinate of B, so overall, the x-coordinate of C falls at

\frac{3}{3+5}=\frac{3}{8}

of the  distance between A and B.

7)

To find the perimeter, we have to calculate the length of each side:

d_{EF}=\sqrt{(x_E-x_F)^2+(y_E-y_F)^2}=\sqrt{(-1-2)^2+(6-4)^2}=3.6

d_{FG}=\sqrt{(x_G-x_F)^2+(y_G-y_F)^2}=\sqrt{(-1-2)^2+(3-4)^2}=3.2

d_{GH}=\sqrt{(x_G-x_H)^2+(y_G-y_H)^2}=\sqrt{(-1-(-3))^2+(3-3)^2}=2

d_{EH}=\sqrt{(x_E-x_H)^2+(y_E-y_H)^2}=\sqrt{(-1-(-3))^2+(6-3)^2}=3.6

So the perimeter is

p = 3.6 + 3.2 + 2 + 3.6 = 12.4

8)

The area of a triangle is

A=\frac{1}{2}(base)(height)

For this triangle,

Base = XW

Height = YZ

We calculate the length of the base and of the height:

Base =XW=\sqrt{(x_X-x_W)^2+(y_X-y_W)^2}=\sqrt{(6-2)^2+(3-(-1))^2}=5.7

Height =YZ=\sqrt{(x_Y-x_Z)^2+(y_Y-y_Z)^2}=\sqrt{(7-5)^2+(0-2)^2}=2.8

So the area is

A=\frac{1}{2}(XW)(YZ)=\frac{1}{2}(5.7)(2.8)=8

9)

A triangle is a right triangle when there is one right angle. This means that two sides of the triangle are perpendicular to each other: however, two lines are perpendicular when their slopes are opposite reciprocals. Therefore, this means that the true statement is

"Two slopes of triangle ABC are opposite reciprocals"

10)

The initial line is

y=\frac{1}{4}x-6

A line perpendicular to this one must have a slope which is the opposite reciprocal, so

m'=-4

Using the slope-intercept form,

y-y_0 = m'(x-x_0)

And using the point

(x_0,y_0)=(-1,5)

we find:

y-5=-4(x-(-1))

Learn more about parallel and perpendicular lines:

brainly.com/question/3414323

brainly.com/question/3569195

#LearnwithBrainly

8 0
3 years ago
Please give me the correct answer.Only answer if you're very good at math.​
Margaret [11]

Answer:

M is negative

Step-by-step explanation:

6 0
3 years ago
Please help? I’m super lost...
babunello [35]

Answer:

Step-by-step explanation:

In all of these problems, the key is to remember that you can undo a trig function by taking the inverse of that function.  Watch and see.

a.  sin2\theta =-\frac{\sqrt{3} }{2}

Take the inverse sin of both sides.  When you do that, you are left with just 2theta on the left.  That's why you do this.

sin^{-1}(sin2\theta)=sin^{-1}(-\frac{\sqrt{3} }{2} )

This simplifies to

2\theta=sin^{-1}(-\frac{\sqrt{3} }{2} )

We look to the unit circle to see which values of theta give us a sin of -square root of 3 over 2.  Those are:

2\theta =\frac{5\pi }{6} and

2\theta=\frac{7\pi }{6}

Divide both sides by 2 in both of those equations to get that values of theta are:

\theta=\frac{5\pi }{12},\frac{7\pi }{12}

b.  tan(7a)=1

Take the inverse tangent of both sides:

tan^{-1}(tan(7a))=tan^{-1}(1)

Taking the inverse tangent of the tangent on the left leaves us with just 7a.  This simplifies to

7a=tan^{-1}(1)

We look to the unit circle to find which values of <em>a</em> give us a tangent of 1.  They are:

7\alpha =\frac{5\pi }{4},7\alpha =\frac{\pi }{4}

Dibide each of those equations by 7 to find that the values of alpha are:

\alpha =\frac{5\pi}{28},\frac{\pi}{28}

c.  cos(3\beta)=\frac{1}{2}

Take the inverse cosine of each side.  The inverse cosine and cosine undo each other, leaving us with just 3beta on the left, just like in the previous problems.  That simplifies to:

3\beta=cos^{-1}(\frac{1}{2})

We look to the unit circle to find the values of beta that give us the cosine of 1/2 and those are:

3\beta =\frac{\pi}{6},3\beta  =\frac{5\pi}{6}

Divide each of those by 3 to find the values of beta are:

\beta =\frac{\pi }{18} ,\frac{5\pi}{18}

d.  sec3\alpha =-2

Let's rewrite this in terms of a trig ratio that we are a bit more familiar with:

\frac{1}{cos(3\alpha) } =\frac{-2}{1}

We are going to simplify this even further by flipping both fraction upside down to make it easier to solve:

cos(3\alpha)=-\frac{1}{2}

Now we will take the inverse cos of each side (same as above):

3\alpha =cos^{-1}(-\frac{1}{2} )

We look to the unit circle one last time to find the values of alpha that give us a cosine of -1/2:

3\alpha =\frac{7\pi}{6},3\alpha  =\frac{11\pi}{6}

Dividing both of those equations by 3 gives us

\alpha =\frac{7\pi}{18},\frac{11\pi}{18}

And we're done!!!

8 0
3 years ago
Find the term indicated in the expansion. (x - 3y)11; 8th term
Alja [10]
The term in the expansion:
T ( k+1) = n C k * A^(n-k) * B^k.
In this case: n = 11,  k + 1 = 8, so k = 7.
A = x, B = - 3 y
T 8 = 11 C 7 * x^(11-7) * ( - 3 y )^7 =
 =( 11 *10 * 9 * 8 * 7 * 6 * 5 ) / ( 7 * 6 * 5 * 4 * 3 * 2 * 1  )* x^4 * ( - 2,187 y^7 ) =
= 330 * ( - 2,187 ) x^4 y^7 = - 721,710 x^4 y^7
Answer: The 8th term in expansion is
 
8 0
3 years ago
Read 2 more answers
What is y=x+2and 2x+y=8
Leya [2.2K]

Answer:

1. x=y−2

2. -1/2y + 4

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Distance between these points.<br>R(-1,0), 5(8,6)​
    5·1 answer
  • Give some examples of items that weigh more than 1 ton
    6·1 answer
  • Can anyone help me as soon as possible?
    12·1 answer
  • Assume that adults have IQ scores that are normally distributed with a mean of 94 and a standard deviation of 14. Find the proba
    5·1 answer
  • Which of the following best describes the equation below?
    10·1 answer
  • What types of solutions will a quadratic equation have when the discriminant b2 − 4ac in the quadratic formula is a perfect squa
    13·1 answer
  • Which graph is likely to have a leading coefficient value of -1/8
    7·2 answers
  • Z=5x-y solve for x plz help
    14·1 answer
  • Answer for brainliest please
    10·1 answer
  • Which equation represents the function? f(x)=−1/2x+4 f begin argument x end argument equals negative fraction 1 over 2 end fract
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!