A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.
<em>A: When burning Sulfur, Sulfur Dioxide is released. Having more Oxygen available provides more reactive potential for the burning Sulfur, making it burn much more fiercely. In water, the Sulfur Dioxide forms Sulfurous acid. Added: 12 years ago.</em>
<em />
<em>Explanation:</em>
<h3><em /></h3>
Given:
1.50 L
62.5 grams
and the MM of MgO: 40.31 g/mol
Molarity: mol/L
First, find mol.
62.5 g x 1mole ÷ 40.31 g = 1.55 mol
then divide mol and the given liters
1.55mol ÷ 1.50 L= 1.03 M
Answer:
What is energy transformation? One type of energy can change into another type of energy. Energy transformation means the changing of energy from one type to another, e.g. from kinetic energy to electrical energy, or from potential energy to kinetic energy.
Explanation: