It is c: a conductor that operates only at low temperatures
Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Answer: A)There is a high ratio of energy to cost
Positives:
A Chunk of Uranium can power a city a lot longer than a chunk of coal.
It also does not contribute to pollution since what comes out of the tower is steam.
Negatives:
It is very expensive to build and maintain a nuclear power plant at first so investors whom want money up front are more reluctant to loan money for one.
If the plant does melt down it is very bad for the enviroment and its people, for example Chernobyl Nuclear Power Plant in the Ukraine will not be able to be lived in for approximently 20,000 years.
Answer:
A. Occur in gaseous and liquid state
Explanation:
The choice that is not a characteristic of minerals is that minerals occur in gaseous and liquid state.
All minerals are solid inorganic compounds.
- A mineral is an inorganic compound that is formed naturally.
- They have a definite and specific chemical composition.
- Minerals are the building blocks of rocks.
- When minerals aggregates together, they form different rock types.
- There is no known mineral that is in fluid state.
- All minerals are solids.
- Examples are quartz, kaolinite, gypsum e.t.c