1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
6

Solve the question.​

Mathematics
1 answer:
Katarina [22]3 years ago
6 0
I suck at math bro sorry for not be able to help
You might be interested in
If the farmer isn't present, the fox cannot be left with either the dog or the goose, or both. if need be, the goose can be left
Natasha_Volkova [10]

Answer:

See below

Step-by-step explanation:

Take fox across

go back to get goose

  take goose across

  take fox BACK

  grab dog.....take dog across

   go back get grain and take it across

    go back get fox and take it across

4 0
1 year ago
When you are finding the slope of a line using two points, it doesn't matter which point you choose to be (x1,y1) and which poin
mariarad [96]
Typically if it is a linear function then it doesn't matter. However if it is a quadratic, cubic, and so on and so forth....(x^{2},x^{3},x^{4}) you may want to used the distance formula if you are not given any other points (with the exception of the vertex, asymptote or roots... etc).
4 0
3 years ago
Explain how 3^7 + 2 must be an odd number
Firdavs [7]
It must be an odd number because 3^7 is also shown as:
3x3x3x3x3x3x3

Which equals:2,187

2,187 is an odd number because the last number is a 7 which is odd.
5 0
1 year ago
Help help help PLS TY
ElenaW [278]
I think it's 4, 2, 3, 1
6 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
Other questions:
  • Indicate the equation of the given line in standard form.The line containing the median of the trapezoid whose vertices are R(-1
    7·1 answer
  • I need help....... please​
    6·2 answers
  • Hi everyone do anyone know what is 5+5 equal too thank you so much​
    8·2 answers
  • Brainliest 40 POINT YOU HAVE TO MULTIPLY Austin is purchasing a car. The car he would like to purchase comes in 5 different colo
    6·2 answers
  • What is the greatest common multiple of 24 and 60
    13·1 answer
  • The temperature today will be at most 50 °F
    11·2 answers
  • Simple la siguiente expresión 3 a , cuando a = 7​
    9·1 answer
  • 2 - (7/8) - (3/4) i need help its hard :/
    5·2 answers
  • Work out the size of angle X
    8·1 answer
  • Im not good at math plz help :)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!