Rutherford's model didn't not account for the properties of electrons. bohr placed electrons in layers of orbit so C
Answer:
You need 375 mL of BaCl2 solution.
Explanation:
M1V1=M2V2
Dilution formula. Substitute known values and solve for V1.
M1 = 2.0 M
M2 = 1.50 M
V2 = 500 mL
(2.0 M)(V1) = (1.50 M)(500 mL)
V1 = (1.50 M)(500 mL) / (2.0 M)
V1 = 375 mL
Answer:
1) The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
2) The amount (in grams) of excess reactant H₂ = 4.39 g.
Explanation:
- Firstly, we should write the balanced equation of the reaction:
<em>N₂ + 3H₂ → 2NH₃.</em>
<em>1) To determine the limiting reactant of the reaction:</em>
- From the stichiometry of the balanced equation, 1.0 mole of N₂ reacts with 3.0 moles of H₂ to produce 2.0 moles of NH₃.
- This means that <em>N₂ reacts with H₂ with a ratio of (1:3).</em>
- We need to calculate the no. of moles (n) of N₂ (5.23 g) and H₂ (5.52 g) using the relation:<em> n = mass / molar mass.</em>
The no. of moles of N₂ in (5.23 g) = mass / molar mass = (5.23 g) / (28.00 g/mol) = 0.1868 mol.
The no. of moles of H₂ (5.52 g) = mass / molar mass = (5.52 g) / (2.015 g/mol) = 2.74 mol.
- From the stichiometry, N₂ reacts with H₂ with a ratio of (1:3).
The ratio of the reactants of N₂ (5.23 g, 0.1868 mol) to H₂ (5.52 g, 2.74 mol) is (1:14.67).
∴ The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
<em>2) To determine the amount (in grams) of excess reactant of the reaction:</em>
- As showed in the part 1, The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
- Also, 0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
- The no. of moles are in excess of H₂ = 2.74 mol - 0.5604 mol (reacted with N₂) = 2.1796 mol.
- ∴ The amount (in grams) of excess reactant H₂ = n (excess moles) x molar mass = (2.1796 mol)((2.015 g/mol) = 4.39 g.
All except for C. And it's good for the environment.
Answer:
The correct answer is - option C.
Explanation:
Given: the melting point of HCl is
-114.8 °C, which suggests that below this temperature HCl will be solid.
and, since the boiling point of HCl is - 85.1 °C. It is also suggested that above this temperature HCl will be gas, Therefore.
Solid -114.8 - Ordered arrangement
Liquid -85.1c - Less orderly arranged
Gaseous - Least orderly arranged
Thus, at —90 °C, HCl will be present 'in the liquid state, At — 1 °C, HCl will be present in the gaseous state and at -129 °C, HCl will be present in the solid-state. So, the molecules will be organized in a more orderly manner
.
Thus, the correct answer is - option C