We know that:
A = 1440
H = 32
So you need to work backwards to find base.
1440 / 32 = 45
We can check our work:
32 x 45 = 1440
B = 45
The first one is 23/30 and the second one is 2 19/24
Answer:
∠x = 90°
∠y = 58°
∠z = 32°
Step-by-step explanation:
The dimensions of the angles given are;
∠B = 32°
Whereby ΔABC is a right-angled triangle, and the square fits at angle A, we have;
∠A = 90°
∴ ∠B + ∠C = 90° which gives
32° + ∠C = 90°
∠C = 58°
∠x + Interior angle of the square = 180° (Sum of angles on a straight line)
∴ ∠x + 90° = 180°
Hence;
∠x = 90°
∠x + ∠y + 32° = 180° (Sum of angles in a triangle)
∴ 90° + ∠y + 32° = 180°
∠y = 180 - 90° - 32° = 58°
∠y + ∠z + Interior angle of the square = 180° (Sum of angles on a straight line)
58° + ∠z +90° = 180°
∴ ∠z = 32°
∠x = 90°
∠y = 58°
∠z = 32°
Answer:
- r = 12.5p(32 -p)
- $16 per ticket
- $3200 maximum revenue
Step-by-step explanation:
The number of tickets sold (q) at some price p is apparently ...
q = 150 + 25(20 -p)/2 = 150 +250 -12.5p
q = 12.5(32 -p)
The revenue is the product of the price and the number of tickets sold:
r = pq
r = 12.5p(32 -p) . . . . revenue equation
__
The maximum of revenue will be on the line of symmetry of this quadratic function, which is halfway between the zeros at p=0 and p=32. Revenue will be maximized when ...
p = (0 +32)/2 = 16
The theater should charge $16 per ticket.
__
Maximum revenue will be found by using the above revenue function with p=16.
r = 12.5(16)(32 -16) = $3200 . . . . maximum revenue
_____
<em>Additional comment</em>
The number of tickets sold at $16 will be ...
q = 12.5(32 -16) = 200
It might also be noted that if there are variable costs involved, maximum revenue may not correspond to maximum profit.