Answer:
a
The number of radians turned by the wheel in 2s is 
b
The angular acceleration is 
Explanation:
The angular velocity is given as

Now generally the integral of angular velocity gives angular displacement
So integrating the equation of angular velocity through the limit 0 to 2 will gives us the angular displacement for 2 sec
This is mathematically evaluated as

![= [\frac{2t^2}{2} + \frac{t^4}{4}] \left\{ 2} \atop {0}} \right.](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B2t%5E2%7D%7B2%7D%20%2B%20%5Cfrac%7Bt%5E4%7D%7B4%7D%5D%20%5Cleft%5C%7B%202%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![= [\frac{2(2^2)}{2} + \frac{2^4}{4}] - 0](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B2%282%5E2%29%7D%7B2%7D%20%2B%20%5Cfrac%7B2%5E4%7D%7B4%7D%5D%20-%200)


Now generally the derivative of angular velocity gives angular acceleration
So the value of the derivative of angular velocity equation at t= 2 gives us the angular acceleration
This is mathematically evaluated as

so at t=2


Answer:
A) 5.2 x 10³ N
B) 8.8 x 10³ N
Explanation:
Part A)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in upward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
7000 - 1800 -
= 0
= 5200 N
= 5.2 x 10³ N
Part B)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in downward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
- 7000 - 1800 = 0
= 8800 N
= 8.8 x 10³ N
<h3><u>Answer;</u></h3>
volume = 6.3 × 10^-2 L
<h3><u>Explanation</u>;</h3>
Volume = mass/density
Mass = 0.0565 Kg,
Density = 900 kg/m³
= 0.0565 kg/ 900 kg /m³
= 6.3 × 10^-5 M³
but; 1000 L = 1 m³
Hence, <u>volume = 6.3 × 10^-2 L</u>
Period of months where the weather is the coldest and the days are the shortest.
As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.
Explanation:
A wave is a traveling disturbance that carries energy from one location to another. All waves move in straight lines outward and away from the source of a disturbance. Like the radiating circular ripples, the waves of water carry energy away from where a rock was dropped into the pond.
Waves can move as a single pulse or as a continuous series of waves, carrying energy away from its source. A pulse is a single disturbance, wave, or ripple that moves outward from the point of disturbance. A train of waves are many waves emitted over and over again from a single source.
As waves travel through matter, they will temporarily displace the molecules or particles in matter up-and-down or side-to-side. Waves move the energy but they do not carry the matter with them longitudinally as they move through matter. Once the disturbance passes, the medium will return to its original state or position.
Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.