1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maxonik [38]
3 years ago
15

Momentum has the same direction as ______.

Physics
1 answer:
marin [14]3 years ago
7 0
Momentum has the same direction as ______.
b. velocity.

Since Momentum = Mass * Velocity, the Momentum will be in the direction of the Velocity resulting in the Momentum. 


You might be interested in
The flywheel of an engine has moment of inertia 2.50 kg m2 about its rotation axis. What constant torque is required to bring it
MrRissso [65]

Answer:

Explanation:

From the question we are told that

   The moment of inertia is  I = 2.50 \ kg \cdot m^2

    The final  angular speed is w_f =  400 rev/min  =  \frac{400 * 2\pi}{60}  = 41.89 \ rad/s

     The time taken is  t =  8.0 s

      The initial angular speed is  w_i  =  0\ rad/s

Generally the average angular acceleration is mathematically represented as

        \alpha  =  \frac{w_f - w_i }{t}

=>     \alpha  =  \frac{41.89}{8}

=>      \alpha  = 5.24 \ rad/s^2

Generally the torque is mathematically represented as

   \tau  =  I  *  \alpha

=>    \tau   =  5.24 *  2.50

=>     \tau   =  13.09 \  N \cdot m

5 0
3 years ago
A Hall probe, consisting of a rectangular slab of current-carrying material, is calibrated by placing it in a known magnetic fie
Citrus2011 [14]

Answer:

(a) 0.345 T

(b) 0.389 T

Solution:

As per the question:

Hall emf, V_{Hall} = 20\ mV = 0.02\ V

Magnetic Field, B = 0.10 T

Hall emf, V'_{Hall} = 69\ mV = 0.069\ V

Now,

Drift velocity, v_{d} = \frac{V_{Hall}}{B}

v_{d} = \frac{0.02}{0.10} = 0.2\ m/s

Now, the expression for the electric field is given by:

E_{Hall} = Bv_{d}sin\theta                            (1)

And

E_{Hall} = V_{Hall}d

Thus eqn (1) becomes

V_{Hall}d = dBv_{d}sin\theta

where

d = distance

B = \frac{V_{Hall}}{v_{d}sin\theta}                      (2)

(a) When \theta = 90^{\circ}

B = \frac{0.069}{0.2\times sin90} = 0.345\ T

(b) When \theta = 60^{\circ}

B = \frac{0.069}{0.2\times sin60} = 0.398\ T

5 0
3 years ago
Astronomers have found water on mars.
vodomira [7]

The thin atmosphere of Mars is thought to be due to the planet's lack of a magnetic field, which has allowed the Solar wind to blow away much of the gas the planet once had. Venus, despite still having a thick atmosphere of CO2, surprisingly has a similar problem

4 0
2 years ago
A sound wave with a frequency of 400 Hz is moving through a solid object. If the wavelength of the sound wave is 8 m, what is th
Paraphin [41]

Answer:

v = 3200 m/s

Explanation:

As we know that the frequency of the sound wave is given as

f = 400 Hz

wavelength of the sound wave is given as

\lambda = 8 m

so now we have

speed = wavelength \times frequency

so we will have

v = (8m) \times (400 Hz)

v = 3200 m/s

4 0
3 years ago
R S ( M ) = 2 G M c 2 , where G is the gravitational constant and c is the speed of light. It is okay if you do not follow the d
padilas [110]

The provided question's answer is "Schwarzschild radius".

The conversion factor between mass and energy is the speed of light squared.

GM/r stands for gravitational potential energy, also known as energy per unit mass.

GM/rc² then has "mass per unit mass" units. In other words, as mass/mass splits out in a dimensional analysis, "dimensionless per unit."

The derivation yields a formula for time or space coordinate ratios requiring sqrt(1 - 2GM/rc²). This number becomes 0 when r=2GM/c2, or the formula becomes infinite if in the denominator. However, there is no justification for using c² as a conversion factor there. Consider the initial expression sqrt(1 - 2GM/rc²).

Assume that m is used as the test particle's mass instead of 1. Then you have sqrt(m - 2GMm/rc² and mass units. This expression denotes that the rest energy of the test mass m you introduced into the gravitational field is "gone" at that radius.

The 2 would be absent if the gravitational field were Newtonian. However, at the event horizon, Einstein gravity is slightly stronger than Newton gravity, resulting in the factor 2 in qualitative terms.

So, the given equation is of Schwarzschild radius.

Learn more about Schwarzschild radius here:

brainly.com/question/12647190

#SPJ10

3 0
2 years ago
Other questions:
  • Which two statements explain how water weathers and erodes rock?
    12·2 answers
  • A pilot heads his jet due east. The jet has a speed of 475 mi/h relative to the air. The wind is blowing due north with a speed
    10·1 answer
  • As water moves down through the ground, what force is acting against it?
    6·2 answers
  • Why can't you trust the law of gravity? (RIDDLE)
    10·2 answers
  • Which statement describes the difference between speed and velocity
    8·2 answers
  • An object is situated to the left of a lens. A ray of light from the object is close to and parallel to the principal axis of th
    5·1 answer
  • At one point in space the Electric potential is measured to be 119 V at a distance of 1 meters away it is measured to be 43 V. F
    9·1 answer
  • The graph below is called a heating curve. It shows how water changes from one state of matter to another based on temperature a
    13·2 answers
  • Ivan walks 10 meters west to the water fountain, then runs 2 meters east to his class to avoid a lockout. His displacement would
    12·2 answers
  • The liquid pressure
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!