Answer:
Explanation:
It is given that the sphere is insulated from ground and a large charge is placed on the sphere. The charge on the hollow sphere will always remain on the outer surface of the sphere and there will be no charge on the inner surface of the sphere.
If a person touches the inner surface of the sphere then he will not be harmed as there is no charge on the inner surface of the sphere.
If a person carries the charge of the opposite sign of the same magnitude then the sphere and person get neutralized upon touching the sphere.
If a person does not touches the sphere then the charge on the outer surface will be zero and there will be a positive charge on the inner surface of the sphere
Air resistance is ignored.
g = 9.8 m/s².
At maximum height, the vertical velocity is zero.
Let h = the maximum height reached.
Let u = the vertical launch velocity.
Because ot takes 5.0 seconds to reach maximum height, therefore
(u m/s) - (9.8 m/s²)*(5 s) = 0
u = 49 m/s
The maximum height reached is
h = (49 m/s)*(5 s) - (1/2)*(9.8 m/s²)*(5 s)²
= 122.5 m
Answer: 122.5 m
The speed of the car is exactly 150/7200 km/sec, or 125/6 meters/sec.
In more familiar units, that speed is equivalent to ...
-- (20 and 5/6) meters/sec
-- 75 km/hour
Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>