Answer:
In vertex form, the parabola's equation is y=(x−1)^2 +5.
Step-by-step explanation:
 
        
             
        
        
        
Answer:
A 1:6
Step-by-step explanation:
3:18 simply to 1:6
 
        
             
        
        
        
Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>
 
        
             
        
        
        
3-83= 80 
80 divided by 2 is 40 
the answer is 40
        
                    
             
        
        
        
Answer:
The first option     (5.7km)
Step-by-step explanation:
Since we have a right angle triangle and we know two of its sides we can easily find out the thirds side (the value of d) by using the Pathagoras Theorem. In our case 7 and d are our legs and the hypotenuse is equal to 9, so...
(Based on the Pathagoras Theorem)



d ≈ 5.7km
There for aproximate distance across the lake is equal to 5.7km