1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maslowich
3 years ago
10

What is the quotation -4/5 divided by 2

Mathematics
2 answers:
rodikova [14]3 years ago
5 0

Answer:

-0.4

Step-by-step explanation:

vekshin13 years ago
4 0
Exact form : -2/5
Decimal form : -0.4
You might be interested in
PLEASE HELP!!! I’LL GIVE BRAINIEST!!!
Vilka [71]

Answer:

  • 8x - 17 = 5x +19

Step-by-step explanation:

Corresponding angles are congruent

thus, 8x - 17 = 5x +19

Hope it helps!

6 0
2 years ago
Read 2 more answers
If f(x) = x³ + x, find <img src="https://tex.z-dn.net/?f=%5Cfrac%7Bf%28x%2Bh%29-f%28x%29%7D%7Bh%7D%2C%20f%5Cneq%200" id="TexForm
Snowcat [4.5K]
I think you are doing limits so this is what I did
and that's how I factored using the box method because it's easier to track distribution.

6 0
3 years ago
Which equation shows y = (x − 4) 2 − 3 written in standard form?
Mrac [35]

Answer:

2x-y=11 is the standard form

Step-by-step explanation:

8 0
3 years ago
PLEASE HELP ASAP !! IF I DONT FINISH THIS HOMEWORK ILL GET GROUNDED .
kvv77 [185]

Answer:

A) Histogram

Step-by-step explanation:

A) The first step would be to look at the purpose and use for each type of plotting method;

Dot Plot: Used to represent the distribution of data (for ex; #of Strawberries, Blueberries, and Raspberries.

Histogram: A histogram is used to summarize discrete or continuous data. In other words, it provides a visual interpretation of numerical data by showing the number of data points that fall within a specified range of values

Box Plot: Summerizes a set of data measured on an interval scale.

Best choice: Histogram- The reason why a histogram is the best representation of the student quartiles is because a histogram is used to summarize <u>discrete </u>or <u>continuous data</u>, and the given data is <u>discrete</u>

B)

To create your histogram you first have to create a frequency table like the one below;

On the vertical axis, place frequencies. Label this axis "Frequency".

On the horizontal axis, place the lower value of each interval. Label this axis with the type of data shown (Score, etc.)

Draw a bar extending from the lower value of each interval to the lower value of the next interval. The height of each bar should be equal to the frequency of its corresponding interval.

That's how it's done!

5 0
3 years ago
Solve the following biquadratic equation:<br><br> <img src="https://tex.z-dn.net/?f=%28%287%21%29%2Ax%5E4%29%2B%28%285%21%29%2Ax
jekas [21]
\large\begin{array}{l} \textsf{Solve the equation}\\\\ \mathsf{7!\cdot x^4+5!\cdot x^2-3=0}\\\\ \mathsf{7!\cdot (x^2)^2+5!\cdot x^2-3=0}\\\\\\ \textsf{Substitute}\\\\ \mathsf{x^2=t\quad(t\ge 0)}\\\\\\ \textsf{so the equation becomes}\\\\ \mathsf{7!\cdot t^2+5!\cdot t-3=0}\quad\Rightarrow\quad\left\{\! \begin{array}{l} \mathsf{a=7!}\\\mathsf{b=5!}\\\mathsf{c=-3} \end{array} \right. \end{array}


\large\begin{array}{l} \mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=(5!)^2-4\cdot 7!\cdot (-3)}\\\\ \mathsf{\Delta=(5!)^2+12\cdot 7!}\\\\ \mathsf{\Delta=5!\cdot 5!+12\cdot 7!}\\\\ \mathsf{\Delta=5!\cdot 5!+12\cdot 7\cdot 6\cdot 5!}\\\\ \mathsf{\Delta=5!\cdot (5!+12\cdot 7\cdot 6)}\\\\ \mathsf{\Delta=5!\cdot (120+504)}\\\\ \mathsf{\Delta=5!\cdot 624} \end{array}

\large\begin{array}{l} \mathsf{\Delta=120\cdot 2^4\cdot 3\cdot 13}\\\\ \mathsf{\Delta=(2^3\cdot 3\cdot 5)\cdot 2^4\cdot 3\cdot 13}\\\\ \mathsf{\Delta=2^{3+4}\cdot 3\cdot 5 \cdot 3\cdot 13}\\\\ \mathsf{\Delta=2^7\cdot 3^2\cdot 5 \cdot 13} \end{array}

\large\begin{array}{l} \mathsf{\Delta=2^{6+1}\cdot 3^2\cdot 5 \cdot 13}\\\\ \mathsf{\Delta=2^{6}\cdot 2\cdot 3^2\cdot 5 \cdot 13}\\\\ \mathsf{\Delta=2^{3\,\cdot\,2}\cdot 3^2\cdot 2\cdot 5 \cdot 13}\\\\ \mathsf{\Delta=(2^3\cdot 3)^2\cdot 2\cdot 5 \cdot 13}\\\\ \mathsf{\Delta=(2^3\cdot 3)^2\cdot 130} \end{array}


\large\begin{array}{l} \mathsf{t=\dfrac{-b\pm \sqrt{\Delta}}{2a}}\\\\ \mathsf{t=\dfrac{-(5!)\pm \sqrt{(2^3\cdot 3)^2\cdot 130}}{2\cdot 7!}}\\\\ \mathsf{t=\dfrac{-120\pm 2^3\cdot 3\sqrt{130}}{2\cdot 7!}}\\\\ \mathsf{t=\dfrac{-2^3\cdot 3\cdot 5\pm 2^3\cdot 3\sqrt{130}}{2\cdot 7\cdot 6\cdot 5\cdot 4\cdot 3!}}\\\\ \mathsf{t=\dfrac{2^3\cdot 3\cdot \big(\!\!-5\pm \sqrt{130}\big)}{2\cdot 4\cdot 7\cdot (2\cdot 3)\cdot 5\cdot 3!}}\\\\ \mathsf{t=\dfrac{2^3\cdot 3\cdot \big(\!\!-5\pm \sqrt{130}\big)}{2\cdot 2^2\cdot 3\cdot 7\cdot 2\cdot 5\cdot 3!}} \end{array}

\large\begin{array}{l} \mathsf{t=\dfrac{(2^3\cdot 3)\cdot \big(\!\!-5\pm \sqrt{130}\big)}{(2^3\cdot 3)\cdot 7\cdot 2\cdot 5\cdot 3!}}\\\\ \mathsf{t=\dfrac{-5\pm \sqrt{130}}{7\cdot 2\cdot 5\cdot 3\cdot 2\cdot 1}}\\\\ \mathsf{t=\dfrac{-5\pm \sqrt{130}}{2^2\cdot 7\cdot 5\cdot 3\cdot 1}}\\\\ \mathsf{t=\dfrac{-5\pm \sqrt{130}}{2^2\cdot 105}} \end{array}

\large\begin{array}{l} \begin{array}{rcl} \mathsf{t=\dfrac{-5+\sqrt{130}}{2^2\cdot 105}}&~\textsf{ or }~& \end{array} \mathsf{t=\dfrac{-5-\sqrt{130}}{2^2\cdot 105}}\quad\textsf{(useless, since }\mathsf{t\ge 0}\textsf{)}\\\\ \mathsf{t=\dfrac{-5+\sqrt{130}}{2^2\cdot 105}} \end{array}


\large\begin{array}{l} \textsf{Substituite back for }\mathsf{x^2=t:}\\\\ \mathsf{x^2=\dfrac{-5+\sqrt{130}}{2^2\cdot 105}}\\\\ \mathsf{x=\pm \sqrt{\dfrac{-5+\sqrt{130}}{2^2\cdot 105}}}\\\\ \mathsf{x=\pm \dfrac{1}{2}\sqrt{\dfrac{-5+\sqrt{130}}{105}}}\\\\ \boxed{\begin{array}{rcl} \mathsf{x=-\,\dfrac{1}{2}\sqrt{\dfrac{-5+\sqrt{130}}{105}}}&~\textsf{ or }~&\mathsf{x=\dfrac{1}{2}\sqrt{\dfrac{-5+\sqrt{130}}{105}}} \end{array}} \end{array}


\large\begin{array}{l} \textsf{Solution: }\mathsf{S=\left\{-\,\frac{1}{2}\sqrt{\frac{-5+\sqrt{130}}{105}},\,\frac{1}{2}\sqrt{\frac{-5+\sqrt{130}}{105}}\right\}.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2094277


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>solve biquadratic equation factorial Bhaskara solution</em>

4 0
3 years ago
Other questions:
  • Luke ate a snack with 91 total calories. If the chips he ate were 41.2
    13·2 answers
  • 617 – 3y) + 6(y- 1)<br><br><br> Answer -12y+48
    9·1 answer
  • In a study, Phoenix Marketing International identified Bridgeport, Connecticut; San Jose, California; Washington, DC; and Lexing
    15·1 answer
  • 2<br> Select the correct answer.<br> Simplify the following expression.
    13·2 answers
  • Find the probability of being dealt a "jacks over aces" full house (three jacks and two aces). (Round your answer to six decimal
    15·1 answer
  • 1.)which of the following actions is NOT a form of transformation
    6·1 answer
  • A number minus seven is nine.
    8·1 answer
  • If two 12-sided dice are rolled, what is the probability that both numbers will be even?
    13·1 answer
  • Can somebody please help me with this please?
    11·2 answers
  • Helpppppppppppp me out
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!