<span>g(x) = x3
– x2 – 4x + 4 </span>
<span>You can find
the zeroes by factoring the equation. x<span>2 </span>(x - 1) - 4(x - 1) = 0 </span>
<span>(x2
- 4) (x - 1) = 0 </span>
(x + 2) (x -
2) (x - 1) = 0
x = 2, -2,
and 1
The
following are the key features of g(x):
g'(x) yields
the slope
g''(x) yields
the concavity
g'(x) = 0 provides
the critical points
<span>g''(x) = 0 provides the point of inflection</span>
Answer:

Step-by-step explanation:
The oblique asymptote of
,
We perform the long division as shown in the attachment.
The quotient is;

Comparing to 3x+k
Hence the value of k is 
The complete question in the attached figure
we have that
tan a=7/24 a----> III quadrant
cos b=-12/13 b----> II quadrant
sin (a+b)=?
we know that
sin(a + b) = sin(a)cos(b) + cos(a)sin(b<span>)
</span>
step 1
find sin b
sin²b+cos²b=1------> sin²b=1-cos²b----> 1-(144/169)---> 25/169
sin b=5/13------> is positive because b belong to the II quadrant
step 2
Find sin a and cos a
tan a=7/24
tan a=sin a /cos a-------> sin a=tan a*cos a-----> sin a=(7/24)*cos a
sin a=(7/24)*cos a------> sin²a=(49/576)*cos²a-----> equation 1
sin²a=1-cos²a------> equation 2
equals 1 and 2
(49/576)*cos²a=1-cos²a---> cos²a*[1+(49/576)]=1----> cos²a*[625/576]=1
cos²a=576/625------> cos a=-24/25----> is negative because a belong to III quadrant
cos a=-24/25
sin²a=1-cos²a-----> 1-(576/625)----> sin²a=49/625
sin a=-7/25-----> is negative because a belong to III quadrant
step 3
find sin (a+b)
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
sin a=-7/25
cos a=-24/25
sin b=5/13
cos b=-12/13
so
sin (a+b)=[-7/25]*[-12/13]+[-24/25]*[5/13]----> [84/325]+[-120/325]
sin (a+b)=-36/325
the answer issin (a+b)=-36/325
Answer:
B and D (
Step-by-step explanation:
1*2/3*2=2/6
1*3/3*3=3/9
Answer:
30,40,50
Step-by-step explanation:
If it is a right triangle then the pythagorean theorum would work
a^2+b^2=c^2
30^2+40^2=50^2
900+1600=2500
2500=2500
this means that 30,40,50 is the right answer
*******extra********
also 30,40,50 is a pythagorean triplet
pythagorean triplets form right angles
this one came from the original triplet of 3,4,5---just multiply by 10