Answer:
length of 1 side of A, using the Pyth. Thm. and the dimensions of the other two squares: (side of A)^2 = (10 in)^2 + (24 in)^2. Then:
(side of A)^2 = 100+ 576 in^2 = 676 in^2.
Here I have not bothered to solve for the length of the side of A, since we want the area of square A. But if you do want the side length, find it: sqrt(676) = 26 in. Then the area of A is (26 in)^2 = 676 in^2.
Then the area of square A is (26 in)^2 =
Read more on Brainly.com - brainly.com/question/10676137#readmore
Step-by-step explanation:
<u>Answer:</u>
The correct answer option is: The y-intercept of the line of best fit shows that when time started, the distance was 5 feet.
<u>Step-by-step explanation:</u>
We are given a scatter plot with a best fit line as shown on the given graph.
The equation of the best fit line is given by:
y = 0.75x + 5
So with the help of the equation and by looking at the given graph, we can conclude about the representation of the y intercept that the the y-intercept of the line of best fit shows that when time started, the distance was 5 feet.
Since the distance shown on the y axis is already 5 when the time started at 0 minutes.
Explanation:
It helps to understand the process of multiplying the binomials. Consider the simple case ...
(x +a)(x +b)
The product is ...
(x +a)(x +b) = x² +(a+b)x + ab
If the <em>constant</em> term (ab) is <em>negative</em>, the signs of (a) and (b) are <em>different</em>.
If the constant term (ab) is <em>positive</em>, the signs of (a) and (b) will both match the sign of the coefficient of the linear term (a+b).
___
Of course, the sum (a+b) will have the sign of the (a) or (b) value with the largest magnitude, so when the signs of (a) and (b) are different, the factor with the largest magnitude will have the sign of (a+b), the x-coefficient.
<u>Example</u>:
x² -x -6
-6 tells you the factors will have different signs. -x tells you the one with the largest magnitude will be negative.
-6 = -6×1 = -3×2 = ... (other factor pairs have a negative factor with a smaller magnitude)
The sums of these factor pairs are -5 and -1. We want the factor pair that has a sum of -1, the coefficient of x in the trinomial.
x² -x -6 = (x -3)(x +2)
Answer:
y = 2x + 3
Step-by-step explanation:
The y-intercept is clearly marked: it's b = 3 (or 0, 3).
Going from the point (-3, -3) to the point (0, 3),
x increases by 3 and y increases by 6. Thus, the slope of the line through these two points is m = rise / run = 6 / 3, or m = 2.
Starting with the slope-intercept form of the equation of a straight line:
y = mx + b, we substitute 2 for m and 3 for b, obtaining:
y = 2x + 3