Answer:
A) CI = (57.12 , 59.48)
B) CI = (57.71 , 58.89)
C) CI = (57.53 , 59.07)
D) n = 239.63
Step-by-step explanation:
a)
given data:
mean, ![\bar X = 58.3](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%2058.3)
standard deviation, σ = 3
sample size, n = 25Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025,
Zc = Z(α/2) = 1.96
![ME = Zc * σ \sqrt{n}](https://tex.z-dn.net/?f=ME%20%3D%20Zc%20%2A%20%CF%83%20%5Csqrt%7Bn%7D)
![ME = 1.96 * 3 \sqrt{25}](https://tex.z-dn.net/?f=ME%20%3D%201.96%20%2A%203%20%5Csqrt%7B25%7D)
ME = 1.18
![CI = (\bar X - Zc * s\sqrt{n} , \barX + Zc * s\sqrt{n})](https://tex.z-dn.net/?f=CI%20%3D%20%28%5Cbar%20X%20-%20Zc%20%2A%20s%5Csqrt%7Bn%7D%20%20%2C%20%5CbarX%20%2B%20Zc%20%2A%20s%5Csqrt%7Bn%7D%29)
![CI = (58.3 - 1.96 * 3\sqrt{25} , 58.3 + 1.96 * 3\sqrt{25})](https://tex.z-dn.net/?f=CI%20%3D%20%2858.3%20-%201.96%20%2A%203%5Csqrt%7B25%7D%20%2C%2058.3%20%2B%201.96%20%2A%203%5Csqrt%7B25%7D%29)
CI = (57.12 , 59.48)
b)
Given data:
mean, ![\bar X = 58.3](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%2058.3)
standard deviation, σ = 3
sample size, n = 100
Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025, Zc = Z(α/2) = 1.96
![ME = zc * σ \sqrt{n}](https://tex.z-dn.net/?f=ME%20%3D%20zc%20%2A%20%CF%83%20%5Csqrt%7Bn%7D%20%20)
![ME = 1.96 * 3\sqrt{100}](https://tex.z-dn.net/?f=ME%20%3D%201.96%20%2A%203%5Csqrt%7B100%7D%20%20)
ME = 0.59
![CI = (\bar X - Zc * s\sqrt{n} , \barX + Zc * s\sqrt{n})](https://tex.z-dn.net/?f=CI%20%3D%20%28%5Cbar%20X%20-%20Zc%20%2A%20s%5Csqrt%7Bn%7D%20%20%2C%20%5CbarX%20%2B%20Zc%20%2A%20s%5Csqrt%7Bn%7D%29)
![CI = (58.3 - 1.96 * 3\sqrt{100} , 58.3 + 1.96 * 3\sqrt{100})](https://tex.z-dn.net/?f=CI%20%3D%20%2858.3%20-%201.96%20%2A%203%5Csqrt%7B100%7D%20%2C%2058.3%20%2B%201.96%20%2A%203%5Csqrt%7B100%7D%29)
CI = (57.71 , 58.89)
c)
sample mean, ![\bar X = 58.3](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%2058.3)
sample standard deviation, σ = 3
sample size, n = 100
Given CI level is 99%, hence α = 1 - 0.99 = 0.01
α/2 = 0.01/2 = 0.005, Zc = Z(α/2) = 2.58
![ME = Zc * σ \sqrt{n}](https://tex.z-dn.net/?f=ME%20%3D%20Zc%20%2A%20%CF%83%20%5Csqrt%7Bn%7D%20%20)
![ME = 2.58 * 3\sqrt{100}](https://tex.z-dn.net/?f=ME%20%3D%202.58%20%2A%203%5Csqrt%7B100%7D)
ME = 0.77
![CI = (\bar X - Zc * s\sqrt{n} , \barX + Zc * s\sqrt{n})](https://tex.z-dn.net/?f=CI%20%3D%20%28%5Cbar%20X%20-%20Zc%20%2A%20s%5Csqrt%7Bn%7D%20%20%2C%20%5CbarX%20%2B%20Zc%20%2A%20s%5Csqrt%7Bn%7D%29)
![CI = (58.3 - 2.58 * 3\sqrt{100} , 58.3 + 2.58 * 3/\sqrt{100}](https://tex.z-dn.net/?f=CI%20%3D%20%2858.3%20-%202.58%20%2A%203%5Csqrt%7B100%7D%20%2C%2058.3%20%2B%202.58%20%2A%203%2F%5Csqrt%7B100%7D)
CI = (57.53 , 59.07)
D)
Given data:
Significance Level, α = 0.01,
Margin or Error, E = 0.5,
σ = 3
The critical value for α = 0.01 is 2.58.
for calculating population mean we used
![n \geq (zc *σ/E)^2](https://tex.z-dn.net/?f=n%20%5Cgeq%20%28zc%20%2A%CF%83%2FE%29%5E2)
![n = (2.58 * 3/0.5)^2](https://tex.z-dn.net/?f=n%20%3D%20%282.58%20%2A%203%2F0.5%29%5E2)
n = 239.63