This is the concept of application of quadratic expressions. Given that the height of the ball is modeled by the equation;
h=-7.3t^2+8.25t+2.1+5
The time taken for the ball to hit the ground will be given as falls;
-7.3t^2+8.25t+7.1=0
to solve for t we use the quadratic formula;
t=[-b+/-sqrt(b^2-4ac)]/(2a)
a=-7.3, b=8.25, c=2.1
t=[-8.25+/-sqrt[8.25^2+4*7.3*7.1]/(-2*7.3)
t= -0.572
or
t=1.702
since there is not negative time we take the time taken for the ball to hit the ground will be: t=1.702 sec
Answer:
Choice B
Step-by-step explanation:
The first step is to write the polar equation of the conic section in standard form by dividing the numerator and denominator by 6;

The eccentricity of this conic section is thus 2/3, the coefficient of cos theta. Clearly, the eccentricity is between o and 1 implying that this conic section represents an Ellipse.
Lastly, the ellipse will open towards the left since we have positive cos theta in the denominator. The only graph that meets the conditions is graph B.
just plug the numbers on the graph like (2,50)
20 jumps because 45/20 is 2.5 and 8 x 2.5 is 20.