0.116 V is the e value for the oxidation of cytochrome c by the cue redox center in complex iv when the ratio of cyst c (fe3 ) /cyst c (fe2 ) is 20 and the ratio of cue (cu2 )/cue (cu ) is 3.
<h3>
Explain the process of oxidation of cytochrome c.</h3>
When cytochrome c is oxidized by mitochondrial cytochrome oxidase (COX), it attaches to Apaf-1 to produce the apoptozole, which activates pro-caspase-9 and causes cell death. Cyst can be created from cytosolic cytochrome c. In the IMS, oxidized cytochrome c can scavenge superoxide without converting it into H2O2, a process that happens naturally but is accelerated by SOD. The benefit of scavenging superoxide independently of H2O2 synthesis is reducing the possibility of hydroxyl radical generation via the Fenton reaction.
To learn more about the oxidation of cytochrome c, visit:
brainly.com/question/14473523
#SPJ4
Mass of Sulphur dioxide : 256 g
<h3>Further explanation</h3>
Given
Reaction
S + O2 --> SO2 *
Required
Mass of Sulphur dioxide
Solution
mol of Sulphur (Ar=32 g/mol) :
mol = mass : Ar
mol = 128 : 32
mol = 4
From the equation, mol ratio S : SO2 = 1 : 1, so mol SO2 = 4
Mass of SO2 :
mass = mol x MW SO2
mass = 4 x 64
mass = 256 g
The moles which were measured out is calculated using the following formula
moles = mass/molar mass
molar mass of CuBr2.4H20 = 63.5 Cu + ( 2 x79.9) br + ( 18 x4_) h20 = 295.3 g/mol
moles is therefore= 5.2 g/ 295.3 g/mol= 0.0176 moles
P =mgh
You have mass, g =9.8 m/s2 and height calculate the potential energy P
Relative molecular mass or RMM is the answer.