Answer:
I would say there would be 5-10% in a city, and maybe 10-20% in the country. It mainly varies depending on how big the city is, how many people/districts there are, and the size of the country, which makes it hard to give a certain percent of shops, as there may be small businesses included as well or new shops being built.
Hope this helps! This was pretty confusing for me as well so i hope the answer is alright (×﹏×)
The relative mass of each element can be found from the periodic table (the larger number). For instance, P2O5, P = 31.0 O = 16.0, thus the formula mass (Mr) is 2(31) + 5(16) = 142 amu (atomic mass unit). I used a not really specific periodic table. Maybe your teacher is referring to open Schoology (a website where teacher can post files or announcements to students in his or her class). Sorry if i got something mistaken.
Answer:
other than the periodic table, are often arranged by their properties
Explanation:
Money, they are arranged by how big or small they are, like coins, with pennies, dimes, and quarters.
Answer:
- Compress
- Fixed
- Melts
- Melting Point
- Freezing Point
- High
- Crystalline
- Lattice
- Unit cell
- Amorphous solids
Explanation:
Solids tend to be dense and difficult to <u>compress.</u>
They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around <u>fixed</u> points.
When a solid is heated until its particles vibrate so rapidly that they are no longer held in fixed positions, the solid <u>melts</u>.
<u>Melting point</u> is the temperature at which a solid changes to a liquid. The melting and <u>freezing point</u> of a substance are at the same temperature.
In general, ionic solids tend to have relatively <u>high</u> melting points, while molecular solids tend to have relatively low melting points.
Most solids are <u>crystalline</u>
The particles are arranged in a pattern known as a crystal <u>lattice</u>
The smallest subunit of a crystal lattice is the <u>unit cell</u>
Some solids lack an ordered internal structure and are called <u>amorphous solids.</u>