I don't know if we can find the foci of this ellipse, but we can find the centre and the vertices. First of all, let us state the standard equation of an ellipse.
(If there is a way to solve for the foci of this ellipse, please let me know! I am learning this stuff currently.)

Where

is the centre of the ellipse. Just by looking at your equation right away, we can tell that the centre of the ellipse is:

Now to find the vertices, we must first remember that the vertices of an ellipse are on the major axis.
The major axis in this case is that of the y-axis. In other words,
So we know that b=5 from your equation given. The vertices are 5 away from the centre, so we find that the vertices of your ellipse are:

&

I really hope this helped you! (Partially because I spent a lot of time on this lol)
Sincerely,
~Cam943, Junior Moderator
Answer:
Maaf saya tidak paham
jadikan jawaban tercerdas, terimakasih
Answer:
a woodchuck could chuck about 700 pounds:
Answer:
5
Step-by-step explanation:
Think of 5 positive things and 9 negative things.
O O O O O
P P P P P P P P P
5 of the positive things will cancel out 5 of the negative things, leaving behind 4 negative things.
#teamtrees #WAP (Water And Plant)
Answer:
The Normal distribution is a continuous probability distribution with possible values all the reals. Some properties of this distribution are:
Is symmetrical and bell shaped no matter the parameters used. Usually if X is a random variable normally distributed we write this like that:

The two parameters are:
who represent the mean and is on the center of the distribution
who represent the standard deviation
One particular case is the normal standard distribution denoted by:

Example: Usually this distribution is used to model almost all the practical things in the life one of the examples is when we can model the scores of a test. Usually the distribution for this variable is normally distributed and we can find quantiles and probabilities associated
Step-by-step explanation:
The Normal distribution is a continuous probability distribution with possible values all the reals. Some properties of this distribution are:
Is symmetrical and bell shaped no matter the parameters used. Usually if X is a random variable normally distributed we write this like that:

The two parameters are:
who represent the mean and is on the center of the distribution
who represent the standard deviation
One particular case is the normal standard distribution denoted by:

Example: Usually this distribution is used to model almost all the practical things in the life one of the examples is when we can model the scores of a test. Usually the distribution for this variable is normally distributed and we can find quantiles and probabilities associated