Answer and Step-by-step explanation:
we have the following data:
Point estimate = sample mean = \ bar x = 12.39
Population standard deviation = \ sigma = 3.7
Sample size = n = 177
a) the margin of error with a 90% confidence interval
α = 1 - 90%
alpha = 1 - 0.90 = 0.10
alpha / 2 = 0.05
Z \ alpha / 2 = Z0.05 = 1,645
Margin of error = E = Z \ alpha / 2 * (\ sigma / \ sqrtn)
we replace:
E = 1.645 * (3.7 / \ sqrt177)
Outcome:
E = 0.46
b) margin of error with a 99% confidence interval
α = 1-99%
alpha = 1 - 0.99 = 0.01
alpha / 2 = 0.005
Z \ alpha / 2 = Z0.005 = 2,576
Margin of error = E = Z \ alpha / 2 * (\ sigma / \ sqrtn)
we replace:
E = 2,576 * (3.7 / \ sqrt177)
Outcome:
E = 0.72
c) A larger confidence interval value will increase the margin of error.
-588298 divided by 239 equals 2461.49791
Answer:
17.1≤x≤23.1
Step-by-step explanation:
The formula for calculating the confidence interval is expressed as;
CI = x ± z*s/√n
x is the mean yield = 20.1
z is the 80% z-score = 1.282
s is the standard deviation = 7.66
n is the sample size = 11
Substitute
CI = 20.1 ± 1.282*7.66/√11
CI = 20.1 ± 1.282*7.66/3.3166
CI = 20.1 ± 1.282*2.3095
CI = 20.1 ±2.9609
CI = (20.1-2.9609, 20.1+2.9609)
CI = (17.139, 23.0609)
hence the required confidence interval to 1dp is 17.1≤x≤23.1
Answer:
none of them its <
Step-by-step explanation: