![\bigstar\:{\underline{\sf{In\:right\:angled\:triangle\:ABC\::}}}\\\\](https://tex.z-dn.net/?f=%5Cbigstar%5C%3A%7B%5Cunderline%7B%5Csf%7BIn%5C%3Aright%5C%3Aangled%5C%3Atriangle%5C%3AABC%5C%3A%3A%7D%7D%7D%5C%5C%5C%5C)
⠀⠀⠀
![\bf{\dag}\:{\underline{\frak{By\:using\:Pythagoras\: Theorem,}}}\\\\](https://tex.z-dn.net/?f=%5Cbf%7B%5Cdag%7D%5C%3A%7B%5Cunderline%7B%5Cfrak%7BBy%5C%3Ausing%5C%3APythagoras%5C%3A%20Theorem%2C%7D%7D%7D%5C%5C%5C%5C)
![\star\:{\underline{\boxed{\frak{\purple{(Hypotenus)^2 = (Perpendicular)^2 + (Base)^2}}}}}\\\\\\ :\implies\sf (AB)^2 = (AC)^2 + (BC)^2\\\\\\ :\implies\sf (AB)^2 = (AB)^2 = (7)^2 = (4)^2\\\\\\ :\implies\sf (AB)^2 = 49 + 16\\\\\\ :\implies\sf (AB)^2 = 65\\\\\\ :\implies{\underline{\boxed{\pmb{\frak{AB = \sqrt{65}}}}}}\:\bigstar\\\\](https://tex.z-dn.net/?f=%5Cstar%5C%3A%7B%5Cunderline%7B%5Cboxed%7B%5Cfrak%7B%5Cpurple%7B%28Hypotenus%29%5E2%20%3D%20%28Perpendicular%29%5E2%20%2B%20%28Base%29%5E2%7D%7D%7D%7D%7D%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%20%28AC%29%5E2%20%2B%20%28BC%29%5E2%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%20%28AB%29%5E2%20%3D%20%287%29%5E2%20%3D%20%284%29%5E2%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%2049%20%2B%2016%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%5Csf%20%28AB%29%5E2%20%3D%2065%5C%5C%5C%5C%5C%5C%20%3A%5Cimplies%7B%5Cunderline%7B%5Cboxed%7B%5Cpmb%7B%5Cfrak%7BAB%20%3D%20%5Csqrt%7B65%7D%7D%7D%7D%7D%7D%5C%3A%5Cbigstar%5C%5C%5C%5C)
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━
☆ Now Let's find value of sin A, cos A and tan A,
⠀⠀⠀
- sin A = Perpendicular/Hypotenus =
![\sf \dfrac{4}{\sqrt{65}} \times \dfrac{\sqrt{65}}{\sqrt{65}} = \pink{\dfrac{4 \sqrt{65}}{65}}](https://tex.z-dn.net/?f=%5Csf%20%5Cdfrac%7B4%7D%7B%5Csqrt%7B65%7D%7D%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B65%7D%7D%7B%5Csqrt%7B65%7D%7D%20%3D%20%5Cpink%7B%5Cdfrac%7B4%20%5Csqrt%7B65%7D%7D%7B65%7D%7D)
⠀⠀⠀
- cos A = Base/Hypotenus =
![\sf \dfrac{7}{\sqrt{65}} \times \dfrac{\sqrt{65}}{\sqrt{65}} = \pink{\dfrac{7 \sqrt{65}}{65}}](https://tex.z-dn.net/?f=%5Csf%20%5Cdfrac%7B7%7D%7B%5Csqrt%7B65%7D%7D%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B65%7D%7D%7B%5Csqrt%7B65%7D%7D%20%3D%20%5Cpink%7B%5Cdfrac%7B7%20%5Csqrt%7B65%7D%7D%7B65%7D%7D)
⠀⠀⠀
- tan A = Perpendicular/Base =
![{\sf{\pink{\dfrac{4}{7}}}}](https://tex.z-dn.net/?f=%7B%5Csf%7B%5Cpink%7B%5Cdfrac%7B4%7D%7B7%7D%7D%7D%7D)
⠀⠀⠀
![\therefore\:{\underline{\sf{Hence,\: {\pmb{Option\:A)}}\:{\sf{is\:correct}}.}}}](https://tex.z-dn.net/?f=%5Ctherefore%5C%3A%7B%5Cunderline%7B%5Csf%7BHence%2C%5C%3A%20%7B%5Cpmb%7BOption%5C%3AA%29%7D%7D%5C%3A%7B%5Csf%7Bis%5C%3Acorrect%7D%7D.%7D%7D%7D)
Answer:
Sam initially made 45 bread rolls
Step-by-step explanation:
Let x = total number of bread rolls made by Sam. He gives 2/5 of the bread to his neighbor. This means he gave 2/5 × x =
2x/5 bread rolls to his neighbor.
The remainder would be x - 2x/5 =3x/5
He gave 4/9 of the remainder to his cousin = 4/9 ×3x/5=12x/45
=4x/15
He has 15 bread rolls left
Total number of bread rolls = what he has left + what he gave his cousin + what he gave his neighbor
x = 15 + 4x/15 + 2x/5
Taking LCM of 15 and cross multiplying
15x= 225+4x + 6x
15x = 225 +10x
15x-10x = 225
5x = 225
x = 225/5 =45
Sam initially made 45 bread rolls
Marina is taller because since Juan is 4 feet, he is 48 inches tall and Marina is 52 inches tall so Marina is taller than Juan.
C.) 30h = 180
Since you already have your base all you have to do is find the height
BxH= A
30xH = 180
Answer:
9 feet 1 inch
Step-by-step explanation:
So, to get the answer we want to add the heights of the boxes.
2 feet, 4 inches + 2 feet 11 inches = 4 feet 15 inches. 4 feet 15 inches + 3 feet 10 inches = 7 feet and 25 inches. 25 inches is equal to 2 feet and 1 inch, so we end up with 9 feet and 1 inch as our answer.