Answer:
The number of cases prior to the increase is 50.
Step-by-step explanation:
It is given that the number of measles cases increased by 13.6% and the number of cases after increase is 57.
We need to find the number of cases prior to the increase.
Let x be the number of cases prior to the increase.
x + 13.6% of x = 57
Divide both the sides by 1.136.
Therefore the number of cases prior to the increase is 50.
Answer:x+85=x+105
x+x=105+85
2x=190
x=190/2
x=95
Step-by-step explanation:
This is the formula for percentage increase and decrease
4$ would be the cost of the item
- <u>A </u><u>triangle </u><u>with </u><u>sides </u><u>11m</u><u>, </u><u> </u><u>13m </u><u>and </u><u>18m</u>
- <u>We</u><u> </u><u>have </u><u>to </u><u>check </u><u>it </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not</u><u>? </u>
According to the Pythagoras theorem, The sum of the squares of perpendicular height and the square of the base of the triangle is equal to the square of hypotenuse that is sum of the squares of two small sides equal to the square of longest side of the triangle.
<u>We </u><u>imply</u><u> </u><u>it </u><u>in </u><u>the </u><u>given </u><u>triangle </u><u>,</u>
<u>From </u><u>Above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
The sum of the squares of two small sides that is perpendicular height and base is not equal to the square of longest side that is Hypotenuse