Answer:
6*(61^2) and 61^3
Step-by-step explanation:
If the squares have a side length of 61 (assuming this is a cube) our surface area is 6*(61^2) because each side is a square and there are six sides.
As for the volume, we have 61^3.
Hope this was helpful.
~cloud
A=s^2
A=6.3^2
(A=6.3x6.3)
And your answer would be:
A=39.69cm^2
The technique of matrix isolation involves condensing the substance to be studied with a large excess of inert gas (usually argon or nitrogen) at low temperature to form a rigid solid (the matrix). The early development of matrix isolation spectroscopy was directed primarily to the study of unstable molecules and free radicals. The ability to stabilise reactive species by trapping them in a rigid cage, thus inhibiting intermolecular interaction, is an important feature of matrix isolation. The low temperatures (typically 4-20K) also prevent the occurrence of any process with an activation energy of more than a few kJ mol-1. Apart from the stabilisation of reactive species, matrix isolation affords a number of advantages over more conventional spectroscopic techniques. The isolation of monomelic solute molecules in an inert environment reduces intermolecular interactions, resulting in a sharpening of the solute absorption compared with other condensed phases. The effect is, of course, particularly dramatic for substances that engage in hydrogen bonding. Although the technique was developed to inhibit intermolecular interactions, it has also proved of great value in studying these interactions in molecular complexes formed in matrices at higher concentrations than those required for true isolation.
Since the problem is to prove that the two triangles are congruent by applying SSS (side -side -side) congruence theorem, the missing or the additional information that can be shown in the solution is the third side of both triangles must be also equal and congruent. Since in SSS theorem, all sides of a given triangle must be congruent to the opposite three sides of the second triangle.
Answer:
2500 Square meters
Step-by-step explanation:
Given the garden area (as a function of its width) as:

The maximum possible area occurs when we maximize the area. To do this, we take the derivative, set it equal to zero and solve for w.
A'(w)=-2w+100
-2w+100=0
-2w=-100
w=50 meters
Since Marquise has 200 meters of fencing to build a rectangular garden,
Perimeter of the proposed garden=200 meters
Perimeter=2(l+w)
2(l+50)=200
2l+100=200
2l=200-100=100
l=50 meters
The dimensions that will yield the maximum area are therefore:
Length =50 meters
Width=50 meters
Maximum Area Possible =50 X 50 =<u>2500 square meters.</u>