The momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
<h3> MOMENTUM:</h3>
Momentum of a substance is the product of its mass and velocity. That is;
Momentum (p) = mass (m) × velocity (v)
According to this question, an object has a mass of 5kg and velocity of 1.2m/s. The momentum is calculated thus:
Momentum = 5kg × 1.2m/s
Momentum = 6kgm/s.
Therefore, the momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
Learn more about momentum at: brainly.com/question/250648?referrer=searchResults
Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.
Answer: 459.14 N
Explanation:
from the question, we have
diameter = 10 m
radius (r) = 5 m
weight (Fw) = 670 N
time (t) = 8 seconds
Circular motion has centripetal force and acceleration pointing perpendicular and inwards of the path, therefore we apply the equation below
∑ F = F c = F w − Fn ..............equation 1
Fn = Fw − Fc = mg − (mv^2 / r) ...................equation 2
substituting the value of v as (2πr / T) we now have
Fn = mg − (m(2πr / T )^2) / r
Fn= mg − (4(π^2)mr / T^2) ..........equation 3
Fw (mass of the person) = mg
therefore m = Fw / g
m = 670 / 9.8 = 68.367 kg
now substituting our values into equation 3
Fn = 670 - ( (4 x (π^2) x 68.367 x 5 ) / 8^2)
Fn = 670 - 210.86
Fn = 459.14 N
Answer:
1210 ohm
Explanation:
Given :
P=40 W
V=220 V
Now,
Therefore, resistance of bulb will be 1210 ohm
25 volts
Explanation:
Use Ohm's law to find the potential drop:
V = IR
= (0.5 A)(50 ohms)
= 25 volts