Answer:
16.6 kJ/°C
Explanation:
given,
Amount of heat absorbed = 45 kJ
initial temperature, T₁ = 25.5°C
final temperature, T₂ = 28.2°C
change in temperature = T₂ - T₁
= 28.2 - 25.5 = 2.7° C



Heat capacity of the object is equal to 16.6 kJ/°C
The question is incomplete! circuit figure is attached below and answer and explanation is provided below.
Answer:
Bulb_A = Bulb_B = Bulb_D and Bulb_C = 0.
Explanation:
What happens when switch is open?
When the switch is open Bulb_C is open circuited meaning that there is no way for the current to flow through it. This path offers infinite resistance to the current therefore, current will try to take a least resistance path that is through Bulb_B.
So eventually, when the switch is open the circuit becomes a simple series circuit with path From battery to Bulb_A to Bulb_B to Bulb_D to battery with Bulb_C = 0.
What happens in a series circuit?
We know that in a series circuit, there is only one path for the current to flow therefore, same current will flow through all the series Bulbs and their brightness will be same. Bulb_A = Bulb_B = Bulb_D
Brightness in a series circuit:
We also know know that in a series circuit, resistance gets summed up and voltage across each Bulb gets shared which results in less power dissipation that's why Bulbs connected in series appear dimmer as compared to when they are connected in parallel.
Answer:
2) Signal #2 is a digital signal that transmits signals in segments/intervals.
Explanation:
Signals are form of information propagating from the source to a display unit for appropriate interpretation. It can be either in a digital or analogue form.
A digital signal is a definite signal which is discrete in time and amplitude. It is mostly in the form of codes obtained from set of values. Graphically it transmits in the form of 1 and 0, showing a point of maximum amplitude (1) and minimum amplitude (0).
Analog signal is continuous signal describing the variation of two variables with respect to time.
Answer:
If the rifle is held loosely away from the shoulder, the recoil velocity will be of -8.5 m/s, and the kinetic energy the rifle gains will be 81.28 J.
Explanation:
By momentum conservation, <em>and given the bullit and the recoil are in a straight line</em>, the momentum analysis will be <em>unidimentional</em>. As the initial momentum is equal to zero (the masses are at rest), we have that the final momentum equals zero, so

now we clear
and use the given data to get that

<em>But we have to keep in mind that the bullit accelerate from rest to a speed of 425 m/s</em>, then <u>if the rifle were against the shoulder, the recoil velocity would be a fraction of the result obtained</u>, but, as the gun is a few centimeters away from the shoulder, it is assumed that the bullit get to its final velocity, so the kick of the gun, gets to its final velocity
too.
Finally, using
we calculate the kinetic energy as

Answer:

Explanation:
The impulse-momentum theorem gives the impulse on an object to be equal to the change in momentum of that object. Since mass is maintained, the change in momentum of the basketball is:
, where
is the mass of the basketball and
is the change in velocity.
Since the basketball is changing direction, its total change in velocity is:
.
Therefore, the basketball's change in momentum is:
.
Thus, the impulse on the basketball is
(two significant figures).