Answer:
F=-100N; a=1.3m/s^2
Explanation:
Force is being made by student, so wall counteracts that force by not moving so it is equally opposite.
Answer:
4.5 Nm (Anticlockwise)
Explanation:
Let the 75 kg kid is sitting at the left end and the 60 kg kid is sitting on the right end.
Anticlockwise Torque = 75 x 1.5 = 112.5 Nm
clockwise Torque = 60 x 1.8 = 108 Nm
Net torque = Anticlockwise torque - clockwise torque
Net Torque = 112.5 - 108 = 4.5 Nm (Anticlockwise)
Answer:
C.) Wave B has about 2.25 times more energy than wave A
Explanation:
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
The correct answer to the question above is The third Option: C; ultrasound imaging of the liver. The ultrasound imaging of the liver is definitely not an application of Doppler technology.
Hope this helps! :)