Answer:
h = 13.06 m
Explanation:
Given:
- Specific gravity of gasoline S.G = 0.739
- Density of water p_w = 997 kg/m^3
- The atmosphere pressure P_o = 101.325 KPa
- The change in height of the liquid is h m
Find:
How high would the level be in a gasoline barometer at normal atmospheric pressure?
Solution:
- When we consider a barometer setup. We dip the open mouth of an inverted test tube into a pool of fluid. Due to the pressure acting on the free surface of the pool, the fluid starts to rise into the test-tube to a height h.
- The relation with the pressure acting on the free surface and the height to which the fluid travels depends on the density of the fluid and gravitational acceleration as follows:
P = S.G*p_w*g*h
Where, h = P / S.G*p_w*g
- Input the values given:
h = 101.325 KPa / 0.739*9.81*997
h = 13.06 m
- Hence, the gasoline will rise up to the height of 13.06 m under normal atmospheric conditions at sea level.
<u>Answer:</u>
Prior to exercise, a proper warm-up of 10-15 minutes is extremely important to avoid injuries.
- Don't go too hard in the beginning and boost your activity level slowly. A good indication of a proper warm-up is that you feel sweat on your body parts.
- Don't overstretch right in the beginning as it can cause sore in your muscles and joints or stress fractures.
- Take a break if you feel sick or fatigues and use other drinks along with water to replace electrolytes and body fluids.
Answer:
A. How much matter an object has, plus the magnitude and direction of its motion
Explanation:
Momentum is defined as the product of mass by velocity, in the international system of measurements (SI) momentum has the following Units [kg*m/s].
P = m*v
where:
P = momentum Lineal [kg*m/s]
m = mass [kg]
v = velocity [m/s]
Therefore the answer is A) How much matter an object has, plus the magnitude and direction of its motion
Answer:
b) 4781 N
Explanation:
Because there is a redius do this question is talking about the acceleration force which= mv^2/r
so a=15^2/80=2.8125 m^2/s
so the force will be = m.a
F =1700×2.8125=4781.25 N
Corrosive substances are rarely harmful to human skin. This statement is <em>False.</em> Corrosive substances are ALMOST ALWAYS harmful to the skin.
Most problems addressed by the technological design process have only one solution. This statement is also <em>False.</em> There is more than one way to skin a cat.