17500 i think but u didn’t give enough info so it could be any without the extra info
You would first put 168 over 4 and simplify to get 42 over 1. Then you would divide 504 by 42 to get 12. You would have to drive 12 hours to get 504 miles.
The list of numbers from least to greatest is
3/10 , 3/7, 3/6
This is because the numerator stays the same across all three of these fractions. However, the denominator is changing, and this proves to be a large difference.
Think about it this way: If you cut a pie into ten pieces, then those slices are going to be smaller than if you cut the pie into seven or six pieces.
well, first off let's check those two points, we know it's centerd at (-26 , 120) and we also know it passes through (0 , 0), so the distance between those two points is its radius
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{0}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{-26}~,~\stackrel{y_2}{120})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{radius}{r}=\sqrt{(~~-26 - 0~~)^2 + (~~120 - 0~~)^2} \implies r=\sqrt{(-26)^2 + (120 )^2} \\\\\\ r=\sqrt{( -26 )^2 + ( 120 )^2} \implies r=\sqrt{ 676 + 14400 } \implies r=\sqrt{ 15076 } \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-26%7D~%2C~%5Cstackrel%7By_2%7D%7B120%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bradius%7D%7Br%7D%3D%5Csqrt%7B%28~~-26%20-%200~~%29%5E2%20%2B%20%28~~120%20-%200~~%29%5E2%7D%20%5Cimplies%20r%3D%5Csqrt%7B%28-26%29%5E2%20%2B%20%28120%20%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20r%3D%5Csqrt%7B%28%20-26%20%29%5E2%20%2B%20%28%20120%20%29%5E2%7D%20%5Cimplies%20r%3D%5Csqrt%7B%20676%20%2B%2014400%20%7D%20%5Cimplies%20r%3D%5Csqrt%7B%2015076%20%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \hspace{5em}\stackrel{center}{(\underset{-26}{h}~~,~~\underset{120}{k})}\qquad \stackrel{radius}{\underset{\sqrt{15076}}{r}} \\\\[-0.35em] ~\dotfill\\\\ ( ~~ x - (-26) ~~ )^2 ~~ + ~~ ( ~~ y-120 ~~ )^2~~ = ~~(\sqrt{15076})^2 \\\\[-0.35em] ~\dotfill\\\\ ~\hfill (x+26)^2+(y-120)^2 = 15076~\hfill](https://tex.z-dn.net/?f=%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Chspace%7B5em%7D%5Cstackrel%7Bcenter%7D%7B%28%5Cunderset%7B-26%7D%7Bh%7D~~%2C~~%5Cunderset%7B120%7D%7Bk%7D%29%7D%5Cqquad%20%5Cstackrel%7Bradius%7D%7B%5Cunderset%7B%5Csqrt%7B15076%7D%7D%7Br%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%20~~%20x%20-%20%28-26%29%20~~%20%29%5E2%20~~%20%2B%20~~%20%28%20~~%20y-120%20~~%20%29%5E2~~%20%3D%20~~%28%5Csqrt%7B15076%7D%29%5E2%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%28x%2B26%29%5E2%2B%28y-120%29%5E2%20%3D%2015076~%5Chfill)