1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
13

What are applications of zeroth law of thermodynamics?​

Physics
1 answer:
Harrizon [31]3 years ago
6 0

Answer:

Applications of zeroth law of thermodynamics:

1. When we get very hot food, we wait to make it normal. In this case, hot food exchanges heat with surrounding and brings equilibrium.

2. We keep things in the fridge and those things come equilibrium with fridge temperature.

3. Temperature measurement with a thermometer or another device.

4. In the HVAC system, sensors or thermostats are used to indicate temperature. It always comes in a thermal equilibrium with room temperature.

5. If you and the swimming pool you’re in are at the same temperature, no heat is flowing from you to it or from it to you (although the possibility is there). You’re in thermal equilibrium.

You might be interested in
When you are on a roller coaster, you are constantly transforming from Potential to Kinetic energy and back. Explain how these e
andreev551 [17]

Answer:

The two types of energy possessed by the roller coaster are:

- Potential energy: it is the energy possessed by the roller coaster due to its position. It is calculated as

PE=mgh

where

m is the mass of the roller coaster

g is the acceleration due to gravity

h is the height of the roller coaster relative to the ground

- KInetic energy: it is the energy possessed by the roller coaster due to its motion. It is calculated as

KE=\frac{1}{2}mv^2

where

v is the speed of the roller coaster

Moreover, according to the law of conservation of energy, the total mechanical energy of the roller coaster (the sum of potential+kinetic energy) is constant during the motion:

E=PE+KE=const.

This implies that:

- When PE increases (because h increases), KE decreases (because v decreases)

- When PE decreases (because h decreases), KE increases (because v increases)

Now we can apply these conclusions to the motion of the roller coaster:

- When it moves from A to B, potential energy is converted into kinetic energy, so PE decreases and KE increases

- When it moves from B to C, kinetic energy is converted into potential energy, so PE increases and KE decreases

- When it moves from C to D, potential energy is converted into kinetic energy, so PE decreases and KE increases

- When it moves from D to E,  kinetic energy is converted into potential energy, so PE increases and KE decreases

8 0
3 years ago
The viewing screen in a double-slit experiment with monochromatic light. Fringe C is the central maximum. The fringe separation
makvit [3.9K]

Answer:

<em>Part A</em><em>:</em>

a) If the wavelength of the light is decreased the fringe spacing Δy will decrease.

<em>Part B</em><em>:</em>

b) If the spacing between the slits is decreased the fringe spacing Δy will increase.

<em>Part C</em><em>:</em>

a) If the distance to the screen is decreased the fringe spacing will decrease.

<em>Part D</em><em>:</em>

The dot in the center of fringe E is 920\ x\ 10^{-9} m farther from the left slit than from the right slit.

Explanation:

In the double-slit experiment there is a clear contrast between the dark and bright fringes, that indicate destructive and constructive interference respectively, in the central peak and then is less so at either side.

The position of bright fringes in the screen where the pattern is formed can be calculated with

                      \vartriangle y =\frac{m \lambda L}{d}

                      m=0,\pm 1,\pm 2,\pm 3,.....

  1. m is the order number.
  2. \lambda is the wavelength of the monochromatic light.
  3. L is the distance between the screen and the two slits.
  4. d is the distance between the slits.
  • Part A:  a) In the above equation for the position of bright fringes we can see that if the wavelength of the light \lambda is decreased the overall effect will be that the fringes are going to be closer. That means that the fringe spacing Δy will decrease.
  • Part B:  b) In the above equation for the position of bright fringes we can see that if the spacing between the slits d is decreased the fringes are going to be wider apart. That means the fringe spacing Δy will increase.
  • Part C:  a) In the above equation we can see that if the distance to the screen L is decreased the fringes are going to be closer. That means the fringe spacing Δy will decrease.
  • Part D: We are told that the central maximum is the fringe C that corresponds with m=0. That means that fringe E corresponds with the order number m=2 if we consider it to be the second maximum at the rigth of the central one. To calculate how much farther from the left slit than from the right slit is a dot located at  the center of the fringe E in the screen we use the condition for constructive interference. That says that the  path length difference Δr between rays coming from the left and right slit must be \vartriangle r=m \lambda

        We simply replace the values in that equation :

                      \vartriangle r= m \lambda =2.\ 460\ nm

                      \vartriangle r= 920\ x\ 10^{-9} m

         The dot in the center of fringe E is 920\ x\ 10^{-9}m farther from the left slit than from the right slit.

     

       

       

     

3 0
3 years ago
Narysuj wykres zależności szybkości od czasu i drogi od czasu jeśli ciało porusza się ruchem jednostajnym z szybkością 45 m/s.
murzikaleks [220]
Lett me come back imma translate this... and then ill come to help
7 0
3 years ago
What happens when red, blue, and green light come together?
Alja [10]

Answer:

I believe if red, blue, and green light come together it would produce White light.

8 0
2 years ago
Read 2 more answers
What is the Kinetic Energy of a tennis ball after 40.0cm of freefall?
OlgaM077 [116]
The kinetic energy is the same as the potential energy of raising it 40cm (0.4m). That's mgh where m is mass of ball. Its then 3.924*m, whatever m is equal to in kg.
3 0
3 years ago
Other questions:
  • Why are we unlikely to find earth-like planets around halo stars in the galaxy? why are we unlikely to find earth-like planets a
    12·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    14·1 answer
  • Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, a
    8·2 answers
  • How long does it take to go 3000 miles at the speed of light?
    10·1 answer
  • A ball moving at a velocity of 10 meters/second has a momentum of 8.0 kilogram meters/second. What is its mass?
    8·1 answer
  • Fahd is trying to write a focused scientific question. He writes, “Does the material something is made of affect its density?” H
    11·2 answers
  • A 1700.0 kg car travels at 14.5 m/s. What is its kinetic energy?
    15·1 answer
  • I need help with one question on my homework. This is on the Specific Heat Capacity required practical.
    9·1 answer
  • How fast is a plane that traveled 400 km in 30 minutes? Give the speed in km/hr.
    11·1 answer
  • It shows gas particles leaving the car exhaust what procees
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!