1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
5

1. A sample consisting of 1.0 mol CaCO3 (s) was heated to 800oC when it is decomposed. The heating was carried out in a containe

r fitted with a piston that was initially resting on the solid. Calculate the work done during complete decomposition at 1.0 atm. What work would be done if instead of having a piston, the container was open to the atmosphere?
Physics
1 answer:
ExtremeBDS [4]3 years ago
6 0
Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
You might be interested in
A single-slit diffraction pattern is formed on a distant screen. Assuming the angles involved are small, by what factor will the
Novay_Z [31]

Answer:

It will be cut in half

Explanation:

The diffraction of a slit is given by the formula

a sin θ = m where

a = width of the slit,

λ = wavelength and

m = integer that determines the order of diffraction.

Next we divide both sides by a, we have

sin θ = m λ / a

Also, recall that

a’ = 2 a

Then we substitute in the previous equation

2asin θ' = m λ, if divide by 2a, we have

sin θ' = (m λ / 2a).

Now again, from the first equation, we said that sin θ = m λ / a, so we substitute

sin θ ’= sin θ / 2

Then we use trigonometry to find the width, we say

tan θ = y / L

Since the angle is small, we then have

tan θ = sin θ / cos θ

tan θ = sin θ, this then means that

sin θ = y / L

we will then substitute

y’ / L = y/L 1/2

y' = y / 2

this means that when the slit width is doubled the pattern width will then be halved

4 0
3 years ago
When food is digested, the
Mice21 [21]

Answer:

Chemical change

Explanation:

A chemical change is what happens. The food digested changes smell due to some enzyme the has acted on the food which catalyzes the rate of digestion. The enzymes acts on the food in order to speed up the rate of the reaction (digestion) and in turn causing the smell.

4 0
2 years ago
A source of sound is kept in a jar in a vacuum. Air is slowly introduced in to the jar. What happens to the sound coming out of
timama [110]
<span>The loudness of the sound increases gradually as the air is slowly introduced in to the jar. This is because sound needs a physical medium and in a vacuum there is none. The air provides that medium and as it is introduced, the transfer of sound energy increases</span>
3 0
3 years ago
Answer either one or both questions! Must explain and show work to receive brainliest!
MariettaO [177]
<span>F x L = W x X whereW=weight is total load = 80, L is length from fulcrum which is the unknown and what we are solving for. x= length we know. and F equals 50 force we know. So (W*X)/F=LL equals 64</span>
3 0
3 years ago
A 86g ball is dropped vertically to the floor from a height of 2.87m and bounces to a height of 1.28. What is the magnitude of t
irga5000 [103]

Answer:

The impulse received by the ball from the floor during the bounce is approximately 1.11329438 m·kg/s

Explanation:

The given mass of the ball, m = 86 g = 0.089 kg

The height from which the ball is dropped, H = 2.87 m

The height to which the ball bounces, h = 1.28 m

Mathematically, we have;

Δp = F·Δt

Where;

Δp = The change in momentum = m·Δv

F = The applied force

Δt = The time of contact with the force

The velocity of the ball just before it touches the ground, v₁ = -√(2·g·H)

The velocity with which the ball leaves, v₂ = √(2·g·h)

The change in momentum, Δp = m·(v₂ - v₁)

∴ Δp = m·(√(2·g·h) - (-√(2·g·H))) = m·(√(2·g·h) +√(2·g·H) )

The impulse, Δp, received by the ball from the floor during the bounce is given as follows;

Δp = 0.089 kg × (√(2 × 9.8 m/s² × 1.28 m) + √(2 × 9.8 m/s² × 2.87 m)) ≈ 1.11329438 m·kg/s

The impulse received by the ball from the floor during the bounce, Δp ≈ 1.11329438 m·kg/s

6 0
3 years ago
Other questions:
  • How does the Coriolis effect impact ocean currents in the Northern and Southern Hemispheres?
    14·1 answer
  • A 2 kg stone is tied to a 0.5 m string and swung around a circle at a constant angular velocity of 12 rad/s. the angular momentu
    15·1 answer
  • At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead with a constant accele
    15·1 answer
  • You take a couple of capacitors and connect them in series, to which you observe a total capacitance of 4.8microfarads. However,
    5·1 answer
  • Two identical point charges are fixed to diagonally opposite corners of a square that is 0.715 m on a side. Each charge is +4.0
    5·1 answer
  • A truck, initially at rest, rolls down a frictionless hill and attains a speed of 20 m/s at the bottom. To achieve a speed of 40
    10·1 answer
  • 7. A box is being pushed from the left at 15N and pushed from the right at 10N,
    11·1 answer
  • A 300 kg car initially travels with a velocity of 20 m/s to the right. A net force F acts on the car for 5 s, which causes the v
    6·1 answer
  • Complete the statement by filling in the Blanks:
    10·1 answer
  • What is the function of physics education
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!