![\bf 343^{\frac{2}{3}}+36^{\frac{1}{2}}-256^{\frac{3}{4}}\qquad \begin{cases} 343=7\cdot 7\cdot 7\\ \qquad 7^3\\ 36=6\cdot 6\\ \qquad 6^2\\ 256=4\cdot 4\cdot 4\cdot 4\\ \qquad 4^4 \end{cases}\\\\\\ (7^3)^{\frac{2}{3}}+(6^2)^{\frac{1}{2}}-(4^4)^{\frac{3}{4}} \\\\\\ \sqrt[3]{(7^3)^2}+\sqrt[2]{(6^2)^1}-\sqrt[4]{(4^4)^3}\implies \sqrt[3]{(7^2)^3}+\sqrt[2]{(6^1)^2}-\sqrt[4]{(4^3)^4} \\\\\\ 7^2+6-4^3\implies 49+6-64\implies -9](https://tex.z-dn.net/?f=%5Cbf%20343%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B36%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-256%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%5Cqquad%20%5Cbegin%7Bcases%7D%0A343%3D7%5Ccdot%207%5Ccdot%207%5C%5C%0A%5Cqquad%207%5E3%5C%5C%0A36%3D6%5Ccdot%206%5C%5C%0A%5Cqquad%206%5E2%5C%5C%0A256%3D4%5Ccdot%204%5Ccdot%204%5Ccdot%204%5C%5C%0A%5Cqquad%204%5E4%0A%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%20%287%5E3%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%2B%286%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-%284%5E4%29%5E%7B%5Cfrac%7B3%7D%7B4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B%287%5E3%29%5E2%7D%2B%5Csqrt%5B2%5D%7B%286%5E2%29%5E1%7D-%5Csqrt%5B4%5D%7B%284%5E4%29%5E3%7D%5Cimplies%20%5Csqrt%5B3%5D%7B%287%5E2%29%5E3%7D%2B%5Csqrt%5B2%5D%7B%286%5E1%29%5E2%7D-%5Csqrt%5B4%5D%7B%284%5E3%29%5E4%7D%0A%5C%5C%5C%5C%5C%5C%0A7%5E2%2B6-4%5E3%5Cimplies%2049%2B6-64%5Cimplies%20-9)
to see what you can take out of the radical, you can always do a quick "prime factoring" of the values, that way you can break it in factors to see who is what.
Answer:
hope it helps mark me brill
Step-by-step explanation:
The general formula for the total surface area of a right prism is T. S. A. =ph+2B where p represents the perimeter of the base, h the height of the prism and B the area of the base.
(1/4ab)^-2
Remove negative exponent by rewritten the equation as (4ab)^2
AUse Product rule to get:
4^2a^2b^2
Now raise 4 to the second power to get:
16a^2b^2
The last answer is correct.
awnser:
m<3=50
Step-by-step explanation:
seen in the picture if you need help let me know
This means that all of the points are co-linear. This is because if EG is a segment that contains F, and EN is a segment that contains M, then there can be two different segments. However, for a point F on the first segment and a point M on a second segment be in the same line as an end point of one of the segments, the segments have to be co-linear. They overlap.