Answer:
Is their a picture so we can see where to put it
Answer:
Concluding that people should take vitamin supplement each day when they don't help.
Step-by-step explanation:
We are given the following in the question:
Hypothesis:
Taking a vitamin supplement each day has significant health benefits and does not have any harmful side effects.
Null hypothesis:
Taking a vitamin supplement each day does not have have significant health benefits.
Alternate hypothesis:
Taking a vitamin supplement each day have have significant health benefits.
Type I error:
- It the error of rejecting the a true null hypothesis.
So error I for this situation would be concluding that people should take vitamin supplement each day when they don't help.
Using the fundamental counting theorem, we have that:
- 648 different area codes are possible with this rule.
- There are 6,480,000,000 possible 10-digit phone numbers.
- The amount of possible phone numbers is greater than 400,000,000, thus, there are enough possible phone numbers.
The fundamental counting principle states that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are ways to do both things.
For the area code:
- 8 options for the first digit.
- 9 options for the second and third.
Thus:

648 different area codes are possible with this rule.
For the number of 10-digit phone numbers:
- 7 digits, each with 10 options.
- 648 different area codes.
Then

There are 6,480,000,000 possible 10-digit phone numbers.
The amount of possible phone numbers is greater than 400,000,000, thus, there are enough possible phone numbers.
A similar problem is given at brainly.com/question/24067651
Answer:
The relation is not a function
The domain is {1, 2, 3}
The range is {3, 4, 5}
Step-by-step explanation:
A relation of a set of ordered pairs x and y is a function if
- Every x has only one value of y
- x appears once in ordered pairs
<u><em>Examples:</em></u>
- The relation {(1, 2), (-2, 3), (4, 5)} is a function because every x has only one value of y (x = 1 has y = 2, x = -2 has y = 3, x = 4 has y = 5)
- The relation {(1, 2), (-2, 3), (1, 5)} is not a function because one x has two values of y (x = 1 has values of y = 2 and 5)
- The domain is the set of values of x
- The range is the set of values of y
Let us solve the question
∵ The relation = {(1, 3), (2, 3), (3, 4), (2, 5)}
∵ x = 1 has y = 3
∵ x = 2 has y = 3
∵ x = 3 has y = 4
∵ x = 2 has y = 5
→ One x appears twice in the ordered pairs
∵ x = 2 has y = 3 and 5
∴ The relation is not a function because one x has two values of y
∵ The domain is the set of values of x
∴ The domain = {1, 2, 3}
∵ The range is the set of values of y
∴ The range = {3, 4, 5}